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Abstract

Using analytical band structure models we study in this thesis the spin physics in
few layer graphenes and on the surface of topological insulators of the SnTe class.
A common feature of both systems is that they host chiral low energy excitations
that are described by a Dirac-Weyl-type equation and can be probed via the indirect
exchange interaction. In order to derive the indirect exchange interaction we deploy
a Green’s function approach. We find that the interaction between two magnetic
impurities, which are intercalated in AB-stacked bilayer graphene, changes its period
discontinuously as the Fermi level passes through the edge of the bonding-antibonding
band gap and is significantly enhanced for higher Fermi energies. This is associated
with a transition of the impurity spin coupling from oscillatory to antiferromagnetic
at small impurity separations. A similar effect can be also achieved by increasing
the temperature or by applying an interlayer bias voltage. To study the spin texture
and the indirect exchange interaction in the crystalline topological insulator of the
SnTe class we use an analytical model which explicitly links the electron spectrum
to the microscopic parameters of the bulk, i.e. the crystal field and the spin orbit
interaction. In this model, we derive the topological states on the (111) surface
and find that the in-plane spin texture is always tangential to a conic section curve
which can be in its form controlled by the band bending at the surface. While the
interaction in a spin unpolarized host such as the few layer graphenes is either purely
ferro- or antiferromagnetic, the crystalline topological insulator of the SnTe class
enables with its spin-polarized surface states a much richer RKKY interaction. The
indirect exchange interaction consists of a Heisenberg-type, a Dzyaloshinskii-Moriya-
type and a XY-type term. We show that the weight of the different terms depends
on the impurity separation, the Fermi energy and in the ternary alloy Pb;_,Sn,Te

the weight can be also controlled by varying the Pb content.
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CHAPTER ]_

Introduction

In the last decade there have emerged two broad classes of condensed matter systems
that feature electron gases for which chirality is a good low energy quantum number.
In the first case we have low dimensional materials such as graphene and its derivatives,
for which the low energy physics is described by a Dirac-Weyl-type electron fluid, but
for which the physical spin, due to the very weak spin-orbit coupling, does not play
a prominent role. Nevertheless, the novel underlying electronic structure leads to
a rich and interesting physics of spin impurities, driven by the unusual form of the
static spin susceptibility [1, 2, 3, 4, 5, 6, 7]. In another new class of two and three
dimensional materials that are known as topological insulators the Dirac-Weyl states
occur at the surface. For these materials, which are insulating in the bulk but metallic
on the surface, spin plays a crucial role. They can be characterized by a coupling that
exists between the crystal momentum and the spin direction of the quasiparticles
known as the spin texture. Henceforth in both new groups of materials one expects a
rich and fundamentally new spin physics which is potentially useful for technological
applications, e.g. in spintronics.

Graphene, a honeycomb lattice of carbon, was for a long period of time considered
as a convenient theoretical model which was helpful for understanding existing car-
bon allotropes, for example carbon nanotubes. This model was considered especially
interesting due to its remarkable analogy to quantum electrodynamics [8, 9, 10, 11]
(QED), but was not expected to be realized in nature. The latter scepticism was
driven both by theory, namely by a theorem stating that two-dimensional materials
are thermodynamically unstable [12, 13], and by the widespread experimental finding
that thin metal films crumple on an insulation substrate [14]. The more surprising
was its experimental discovery by a simple exfoliation technique in 2004 [15]. This
and subsequent experiments confirmed many of the remarkable physical properties ex-
pected on the basis of the low energy QED analogy and uncovered many remarkable
mechanical and chemical properties [16, 17, 18, 19, 20] of this genuine two-dimensional
solid.

The low energy electronic structure of graphene features two inequivalent conical
band intersections situated at the K and K’ high symmetry points of the hexagonal
Brillouin zone [8, 9, 15]. Quasiparticles on these low energy manifolds are described by
an effective Dirac-Weyl equation, the same equation that governs massless neutrinos
but with the speed of light ¢ replaced by the Fermi velocity of graphene vg & ¢/300.
Similar to neutrinos these quasiparticles are endowed with a pseudospin degree of
freedom and with a new good quantum number, the chirality, that takes on the values
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+1 for positive energy, and —1 for negative energies. From this emergent low energy
physics many of the remarkable properties of graphene can immediately be deduced.
In particular, chirality leads to a suppression of back scattering and, as a consequence,
to very high electron mobilities with near ballistic transport as observed in graphene
nanoribbons [15, 21, 22]. The presence of positive as well as negative energy branches,
implied by the Dirac-Weyl Hamiltonian, fundamentally alters transition and reflexion
of quasiparticles on potential barriers: for certain directions of incidence electrons
can tunnel through arbitrarily high barriers with unity probability. This, of course, is
just a condensed matter physics realization of the famous Klein paradox which is well
known in QED [23, 24]. In a magnetic field, the Landau spectrum of graphene shows
a F, o« ++/n quantization sequence with the proportionality constant involving vp,
and hence much larger than the ordinary quantization scale involving the cyclotron
mass. As a consequence, the quantum Hall effect (QHE) can be observed in graphene
at room temperatures [21, 22], in contrast to the common QHE in semiconductor
heterostructures which require temperatures below 70 K [25, 26]. Some of these effects
are expected to play an important role in future technological applications: today the
first graphene-based field effect transistors are in operation and could represent, after
optimization for industrial use, an alternative to the common Si devices [27, 28, 29].

The RKKY Interaction in Bilayer Graphene

The indirect exchange interaction between magnetic moments through a non-magnetic
host (known in the leading order as the RKKY interaction) was first studied by
Ruderman and Kittel in the context of the coupling of nuclear spins in silver, and was
successfully used to explain the broad spin resonance line in this metal [30]. Kasuya
and Yosida further generalized the theory to the case of impurity spins in a non-
magnetic host, as occurs for instance in the classic example of CuMn alloys [31, 32].
Later the research in this field included impurities in two-dimensional electron gases,
e.g. the surface state of Cu(111), where also the Friedel oscillations of the electron
density were directly observed with scanning tunnelling microscopy (STM) [33, 34].
With the experimental discovery of graphene, the attention of theorists was drawn to
the question of how the RKKY interaction would manifest in this novel Dirac-Weyl
election gas. Two key differences from the case of the two-dimensional Schrodinger
electron gas were noted: (i) at the Dirac point one has an unusual envelope decay
1/R3 [1, 3, 4,5, 6, 7, 35] as opposed to the expected 1/R? [36, 37, 38, 39] with R the
impurity separation and (ii) the multivalley low energy spectrum leads to an inter-
valley component of the RKKY which is fast oscillating on the scale of the lattice
constant, and which is also responsible for a sensitivity of the RKKY to the local
impurity environment [1, 2, 3, 4, 5, 6, 35]. A number of subsequent publications have
addressed further generalizations of the RKKY problem in graphene: the RKKY in
spin-polarized graphene [40], the effect of disorder [41, 42], strain [43], and different
impurity types [2, 3, 5, 6]. One of the most natural generalizations which has been
missing is the one from a single-layer to few layer graphenes.

Multilayer graphenes are of interest for two reasons. Firstly, the multilayer situation
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offers the possibility of an intercalated impurity geometry. Since the ionic radius of
a typical magnetic impurity is comparable to the interlayer separation one expects
a strong impurity-bilayer coupling, a situation not realized for physisorbed surface
impurities. Secondly, it is known that the low energy spectrum depends sensitively
on the stacking order in few layer graphene systems. This should be reflected in
the spin susceptibility and hence in a rich RKKY physics associated with few layer
graphenes. Investigating the RKKY in few layer graphene forms the first part of this
thesis.

The simplest structural generalization of the multilayered structures is a bilayer which,
due to the weak van-der-Waals bonding of the layers, can be realized in a number of
different stacking arrangements [8, 44, 45, 46]. The lowest energy stacking configura-
tion is the so called Bernal stacking in which the two layers are arranged in the same
AB fashion as found in graphite [Fig. (4.3)]. The band structure at low energies is
characterized by a parabolic dispersion and at (lower) higher energies by (bonding)
antibonding bands, also with parabolic dispersion, that are separated by an energy
of ~ 0.8eV [47, 48]. Furthermore, both theory and experiment report the opening of
a band gap at the Dirac point by an out-of-plane electric field [49, 50, 51]. At zero
doping and zero electric field the RKKY interaction is described by an algebraic 1/R™
decay where the power n depends sensitively on the sublattice position of both impu-
rities [52], reflecting the more complex structure of the wave function in the bilayer
material. For two impurities on the A (B) sublattice a 1/R® (1/R?) decay is found,
while impurities on different sublattices are described by an intermediate 1/R?* enve-
lope. For finite doping the interaction has been addressed via a downfolded two-band
Hamiltonian that projects the full bilayer wave function onto a subspace involving
only the B sublattices [53, 54]. The resulting two-band model, however, cannot treat
the complex sublattice dependence of the RKKY interaction in bilayer graphene.

All these previous works focused on the interaction between impurities that couple to
a single lattice site. However, as we have mentioned above, from the physical point
of view it is much more realistic to consider an intercalated impurity geometry which
involves multiple sites. In the first part of this thesis we investigate such intercalated
impurities for two different physical situations: (i) the RKKY interaction in undoped
material in the presence of a layer perpendicular electric field, and (ii) a highly doped
bilayer at zero field. The latter case is particularly interesting as a change of the
Fermi surface topology occurs when the Fermi energy crosses the antibonding band
edge ;. For Er < E, one has a single Fermi circle, while for Er > E, a double
Fermi circle and, as we show in Chapter 4, this change in topology is associated
with a discontinuous change of the RKKY period. For energies arbitrarily close to
E,, but still less than E,, the interaction oscillates with the wave vector of the low
energy band, giving an oscillation period A — 15a as Ep approaches E, from below
(a is the graphene lattice constant). However, once Ep is equal or greater than
E, the oscillation is governed entirely by the Fermi vector of the antibonding band,
giving an osculation period A — oo as Ep approaches E, from above. In short,
as the Fermi energy crosses the antibonding gap edge the low energy manifold is
“switched off” and the high energy manifold “switched on”. This physics is seen
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only for the intercalated impurity. This rapidly changing zero temperature RKKY
is also manifest as an unusual temperature dependence of the RKKY interaction.
At finite temperatures, for the Fermi energy close but still below the antibonding
band edge, a low temperature oscillatory interaction goes over to a high temperature
antiferromagnetic interaction. Needless to say, this is in sharp contrast to the usual
behaviour of the RKKY interaction in which the same qualitative form is seen at all
temperatures.

The second case we consider, also in Chapter 4, is the RKKY interaction close the
Dirac point but in the presence of a layer symmetry breaking applied electric field. We
find that RKKY interaction has three distinct band structure regimes: (i) a damped
ferromagnetic interaction in the gap, (ii) an antiferromagnetic interaction “on the brim
of the Mexican hat” Ey, and (iii) an oscillatory interaction for energies greater than
Ey. This energy sensitivity is manifest in different ways depending on whether the
physical situation fixes the Fermi energy or the particle number. For example, bilayer
graphene epilayers grown on SiC have a chemical potential fixed by the substrate
[55, 56], and this leads to an evolution from an oscillatory to an antiferromagnetic
interaction as a function of the applied field — an effect that occurs as the Fermi energy
is driven towards the “brim of the Mexican hat” as the gap opens in an applied field.

Topological Insulators

The second class of materials which feature chiral low energy excitations are topolog-
ical insulators. In contrast to other solids topological insulators reveal their peculiar
properties at their surfaces. These materials feature metallic surface states that are
topologically protected. As in the case of graphene these states are described by a
Dirac-Weyl equation close to the conical intersection point. However, in contrast to
graphene there is no longer an obvious relation between the pseudospin degree of
freedom and the atomic structure of the unit cell.

The protection of the surface state is guaranteed either by the time reversal symmetry
T (the Z, topological insulators [57, 58, 59]) or by the point group symmetry of the
crystal (the crystalline topological insulators [60, 61, 62, 63, 64]). In the former case
the topological protection holds for any crystal face while for crystalline topological
insulators the surface states are protected only on facets that feature the necessary
point symmetry operation.

Characteristic of all topological insulators is the fact that momentum and spin of
the quasiparticles are, in contrast to common materials, no longer independent but
strictly coupled: the momentum direction unequivocally determines the spin direction.
Such spin-momentum locking can be described by a vector field of spin directions in
the momentum plane, known as the spin texture. This texture can be measured
in angle-resolved photoemission spectroscopy (ARPES) experiments. Data exists,
for example, for two of the most popular representatives of the strong topological
insulators, the chalcogenides BisSes and BisTes [65, 66, 67, 68, 69]. Both materials
possess T-protected surface states at the I' point of the surface Brillouin zone, with
only the former system featuring a distinct Dirac-Weyl cone (for BisTes a heavily
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distorted cone is observed). The spin textures are very different: while spin and
momentum in BisSez are, due to strong spin-orbit interaction, locked at right angles
[66, 68, 70], the spin texture of the warped Dirac cone in BisTes is, according to Refs.
[67, 71, 72], much more complex and has an out-of-plane component.

These examples highlight the non-universal spin structure of the topological surface
state. This raises the question of how the bulk parameters — e.g. the spin-orbit in-
teraction and crystal field in the bulk as well as the band-bending at the surface —
determine the properties of the topological surface state and its spin texture. Under-
standing this relation requires a clear route from the microscopic physics of the bulk
insulator (characterized by the corresponding quantum numbers, e.g. spin, angular
momentum, parity, etc.) to the emergent effective pseudospin degrees of freedom of
the topological Dirac-Weyl (DW) surface state. In this thesis, we analytically follow
this route on example of IV-VI semiconductors.

The IV-VI semiconductor family adopt a simple rock salt crystal structure and, per-
haps uniquely amongst the topological insulators, offers the possibility to trace the
route from microscopic to emergent variables. The basic concept behind this route
is, in fact, not new and dates back to the 1980s. At that time the L point band
structure of the IV-VI semiconductors was derived analytically using the symmetry
of the L point which includes the mirror symmetry and the threefold rotational sym-
metry around the (111) axis [73, 74]. In these works it was figured out that some
materials such as SnTe have an inverted band gap while others such as PbTe have
a conventional band ordering. When two materials with opposite band ordering are
put together forming a band inversion contact, which can be realized e.g. by variation
of the Pb content in the ternary compound Pb,Sn;_,Te, linear dispersing interface
states emerge [75, 76, 77, 78]. A similar situation occurs at the surface of SnTe, i.e.
at the contact of the inverted band structure with vacuum, where the same effect, the
mirror symmetry about the (110) plane, guarantees topological states on the (100),
(110) and (111) surface [63, 64, 79, 80, 81, 82, 83]. This surface is particularly inter-
esting and, as we will see in this work, it is analytically tractable: the (111) surface
has in its hexagonal surface Brillouin zone two different types of Dirac points. The
Dirac cone at the M-point has a slight anisotropy and is shifted in energy by 170meV
relative to the apex of the Dirac cone at the I' point [79]. In recent works these topo-
logical surface states were treated phenomenologically in a generic Dirac-Weyl model
which was not related to the bulk band structure. The link between the pseudospin
degree of freedom of the Dirac-Weyl equation and the quantum numbers of the bulk
thus could not be uncovered. In Refs. [81, 82], for example, it was assumed that the
basis wave functions were pure spin up or spin down states which is certainly not true
for SnTe [73, 74].

To fully reveal the nature of the Dirac-Weyl surface states we treat in this work the
spin texture and the RKKY interaction using a microscopic model based on the proper
description of the bulk electron spectrum. In Chapter 5 we discuss the bulk electronic
structure of the IV-VI semiconductors. These materials feature a low energy spectrum
that is described by an effective Dirac equation [73, 74, 84]. In Chapter 6 we “take
the bulk Hamiltonian to the surface”, using an appropriate boundary condition. The
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latter involves the band inversion [75] and is now known as a “topological boundary
conditio” [75, 81]. We find the topological surface state and express its wave function
in terms of the fundamental edge states of the bulk insulator. Importantly, as the
bulk Dirac equation is derived from the tight-binding model, the pseudospin degrees
of freedom are not introduced ad hoc, but emerge from the low energy spectrum of
the band edge states of the bulk insulator.

From this fully microscopic yet analytical approach two interesting observations follow.
Firstly, there are two distinct mechanisms that act to entangle spin in the surface state:
(1) spin-orbit induced spin mixing within the bulk wave functions and, (ii), an intrinsic
topological spin entanglement arising from the superposition of bulk band edge states
that comprise the topological surface state. Secondly, we find that the microscopically
derived surface state wave function may possess, for the same crystal facet, a highly
non-universal richness of spin structures. We find not only a helical spin texture —
the “standard result” — but also hyperbolic and linear spin textures. Which of these
is realized depends on the microscopic physics of the material: namely on the balance
of spin-orbit and crystal field effects in the bulk, and on the band bending at the
crystal-vacuum boundary.

Finally, in Chapter 7 we return to the RKKY interaction in the context of the IV-VI
semiconductor surface state. While the RKKY interaction in TIs has been considered
in the past on the basis of phenomenological Dirac-Weyl models [85, 86, 87], as well as
with ab initio calculations for magnetic impurities in some specific materials [88], our
focus is instead to investigate analytically the connection between the bulk physics
and the topological surface state, viewing the RKKY interaction as a probe of this
connection. To that end we consider the RKKY interaction on the (111) surface of the
IV-VI semiconductors and investigate the effect that the bulk spin-orbit and crystal
field interactions have on this interaction. We find that the qualitative form of the
RKKY interaction is profoundly impacted by the balance of the spin-orbit and the
crystal field. The relative weight of the various terms in the RKKY interaction, namely
the X'Y-type, the Ising-type and the Dzyaloshinskii-Moriya-type is determined by the
ratio of the spin-orbit and the crystal field parameters, the same factors that govern
the spin texture of the topological surface state.

Outline of the Thesis

The thesis is structured as follows: first, in Chapter 2, we provide a short introduction
to the indirect exchange interaction in a non-interacting electron gas and present an
analytical derivation of the interaction energy at zero and at finite temperature. In
the following two chapters we use these results in a study of the RKKY interaction
in graphene monolayer and AA- and AB-stacked graphene bilayer. For all three cases
we present a systematic analysis of the RKKY interaction as a function of the Fermi
energy, impurity separation, temperature and for different electron impurity coupling
schemes. The first part of the thesis ends with a discussion of the RKKY interaction in
the biased AB-stacked bilayer graphene. In the second part of the thesis we address the
low energy physics on the (111) surface of IV-VI semiconductor topological insulators.

6
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Our presentation begins with a discussion of an analytical model that describes the
bulk band structure close to the high symmetry L points (Chapter 5). Based on this
model we derive the topological surface states and their spin texture. In the last
chapter, we calculate the RKKY interaction mediated by these topological surface
states.



CHAPTER 2

The Indirect Exchange Interaction

This chapter gives a short introduction to the indirect exchange interaction. We begin
with the standard electron gas model and derive the interaction energy at zero and at
finite temperature using quantum field theory techniques. In this way we can express
the interaction energy in terms of Green’s functions, a strategy which leads in the
lowest order to the well-known Green’s function expression for the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction. We conclude the chapter with considering the
RKKY interaction in other, non-standard coupling schemes, which are necessary to
discuss the interaction in a realistic solid.

The Indirect Exchange Interaction at Zero Temper-
ature

We consider N magnetic impurities embedded in a gas of non-interacting electrons.
Each impurity spin is treated as a classical object that couples via a contact interaction
to the electron spin density. The resulting spin polarization is felt by the neighboring
impurities and in this way there arises a coupling between impurity spins that is
known in literature as the indirect exchange interaction. The Hamiltonian of the
interacting many-body system may be written as H = H° + W where H° is taken for
the Hamiltonian of the non-interacting system and the perturbation W is described
by a contact interaction between the impurity spin S; and the itinerant electron spin
density s;

N
i=1

In a second quantization representation the single-particle operator for electron spin
density is given by s; = R/23° | cjuo',wci,, where c;-r# generates an electron at site
ie{l,---, N} with spin p € {1,]} and o is the vector of Pauli matrices. Here, our
intention is to calculate the interaction energy that can be written as the expectation
value of the Heisenberg operator Wy (t) = exp(iHt/h)Wexp(—iHt/h) in the ground
state of the interacting many-body system | Wy)

(Wo [ Wa(t) | Vo)

Einy = (o | Do) (2.1.2)
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For an analytical evaluation of the matrix element in the numerator it is convenient
to use the interaction picture where Eq. (2.1.2) takes the form

S () [ [
X Qg | T [Wr(ty) - Wiltm)Wi(t)] | Do) (2.1.3)

with Wi (t) = exp(iHt /h)Wexp(—iH°t/h) and the ground state of the non-interacting
system | ®p). In the ground state of the non-interacting system all single-particle en-
ergy levels up to the Fermi energy er are occupied. After inserting the perturbation
in its second quantization representation Wi(t) = —hA/23_  (0.,.S;) c;r“(t*)cw(t)
we obtain the following expression

XA e= 1 i\
a5y () XX %
m= 581, lm 41,7 s Hm Va1,

X (Si-0) (Siy-0 1) -+ (Sivy -G i) / dty - - / dt,,

o0

% (@ | T [l ()i (8) €] ()t ()l (E e ()] | @) (2:1.4)

where the time ordering operator 1" sorts the field operators from the left to the right
in descending time order:

dWeu(t)  t>t

—cju(t)cl,(t) t >t (2:15)

Tlel, (e (t')] = {

In order to conserve the proper order of creation and annihilation operators within
each Wi(t) the creation operator ¢! L(tT) = exp(iHt [h)cyexp(—iHtt /h) is eval-
uated at the time ¢*, a time that is infinitesimally later than ¢. At this point it is
convenient to introduce another product, the normal ordered product, that places all
annihilation operators to the left and all creation operators to the right:

Nlel, (e (t)] = ¢ (el (1) (2.1.6)

The factor —1 comes, in Eq. (2.1.6) and in the second line of Eq. (2.1.5), from the
interchange of the two fermion operators. The difference between the time ordered
and the normal ordered product of two field operators is in literature well known as
a contraction:

e (1) = Tle], (s ()] = Nlel, (t)esu ()] (2.1.7)
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This contraction defines the time ordered Green’s function of the non-interacting
electron gas:
GO, (ri, t,15,t) = —ici,(t)°c], (t')°
{®o | Tlequ(t)el, (¢)] | ®o)

— AL (2.1.8)

Here we also want to define the retarded and the advanced Green’s function that are
easier to access and have, as will be seen later, a simpler analytical structure

%o | {ein(t), ¢l (1)} | @o)

GOl (rs by, 1) = — @y [ D) ot —t) (2.1.9)
()b (@ | @,
G (i, b,y ) = Al {C”zg" go(;)} ® >@(t’ — 1) (2.1.10)

where the braces { , } stand for the anti-commutator. Since the Hamiltonian H°
has a translational invariance and no explicit time dependence all propagators are a
function of the difference ¢ — ¢ and r; — r;, only.

With these definitions in mind we go back to Eq. (2.1.4) and replace, for each order m,
the expectation value according to Wick’s theorem by the sum over all contractions.
Each contraction is a product of time ordered single particle Green’s functions and can

»
>

X X X %(w)

Figure 2.1: The integration contour for the function f(w) =
exp(iwn) G°(k,w)G%k;,w)---G°k,,,w) in the complex plane.  The contour
integral over the product of time ordered Green’s functions in the upper half plane
can be split into two sub-contours with R(w) < wp and R(w) > wr over the product
of retarded and advanced Green’s functions, respectively. The singularities of the
retarded and advanced Green’s functions are indicated in the respective energy range
by black crosses.

10



CHAPTER 2. THE INDIRECT EXCHANGE INTERACTION

be illustrated by a Feynman diagram with an on-site spin-flip at each space-time vertex
(r;,t) and the propagation between two neighboring vertices described by a single
particle Green’s function. Note that the original expectation value, Eq. (2.1.2), may be
written as a product of two factors: the first factor is the sum of all connected diagrams
and the second factor is the sum of all disconnected diagrams. As indicated by the
subscript ¢ the contribution of all disconnected diagrams has been, in Eq. (2.1.3),
cancelled with the normalization (¥, | Wo). For this reason we have to include only
those diagrams that connect the space-time vertices {(r;,t), (r;,,t1), - (r;,,tm)} on
a closed loop. This is achieved by summing over all permutations P of the indices

{1, m}
LTINS o >

Podin, e im 1,0 fbm VsV1 eV

X (Si.O'm,) (Sil'o-/nlq) e (Sim'o-u’erV'rn) / dty--- / dtm

o0 [e.o]

0 + 0 +
X GVMP(l (ri7 t? rip(1) ) tP(l)) Gyp(l)up(g) (riP(l) ? tP(1)7 riP(?) ) tP(Z)) U

X G (T s to(mys Tos tF) (2.1.11)

By exchanging indices (such as py <> po, 11 <> 5 and iy <> 43) it can be seen easily
that all permutations equally contribute to the interaction energy. Hence the factor
1/m! cancels with the total number of permutations. Then we perform the sum over
the spin indices pu, i1, - - - fty, and v, vy, - - - , v, and obtain a trace over the product of
o .S matrices and Green’s functions.

0o A m+41
Eint:—ihz<§) Z / dty - - / dt .,
m=0

0,01,

x Tr [(Sza') G0<I'7;7t, I'il,tii_) (S“G') G (ri“tl,rh,t;) s
% (Si,-0) G°(r;,,, m,rz,t+)} (2.1.12)

After replacing each Green’s function by its Fourier transform the energy takes the
form

po_ i < /o "
int_%ng%;(r]\[o) Z Z

2,81, ,tm K,K1,+ k
W ¢~k (rig —ri) =ik (rip—riy) e*ikm‘(rim*ri)[(k’ ki, k) (2.1.13)
with the number of unit cells Ny and I(k, ki, -, k) given by

-/ " € Tr [(S,.0) GOk, w) (Si.0) GOk1, @) -+ (Si,.07) Gl 0)]
OO (2.1.14)

11



2.1. THE INDIRECT EXCHANGE INTERACTION AT ZERO TEMPERATURE

The integration in Eq. (2.1.14) can be performed along a contour in the complex w-
plane [Fig. (2.1)]. The convergence factor exp(iwn) indicates, with n = ¢+ —¢ > 0,
that the contour must be closed in the upper half plane. In Fig. (2.1) the contour
in the upper half plane is drawn as a sum of the two sub-contours C} and Cy with
Rw < wp and Rw > wp, respectively. Each of these sub-contours consists of three
sections: an integral over the real axis, an integral parallel to the imaginary axis and
an integral over the arc. Within these sub-contours the time ordered Green’s function
is either given by the the retarded or by the advanced Green’s function. The relation
between the three different Green’s functions can be understood from the Lehmann
representation of their Fourier transforms

(Yo | c0u(0) | Wad(Ws | b, (0) | o)

Ok,P,./h

G, (k,w) = ANy >

(Wo | 4, (0) | W) (W | c0u(0) | Wo)
_ 2.1.1
+0k,—P,./h hw — (B — Fo) — in ( 5)
0R,A _ (o | cou(0) | W) (¥ | €h,(0) | W)
GMV (k,w) —hN[); (Sk,Pn/h hw—(En—E()):l:ZT]
(o | by (0) | W) (T | c0u(0) | W)
+0x,—P,/n h — (En — Fo) £ i1 (2.1.16)

with the plus sign in Eq. (2.1.16) taken for the retarded and the minus sign for the
advanced Green’s function. In the expressions above, the wave functions | ¥,,) form
a complete set of common eigenstates to the Hamiltonian H and the momentum
operator P. The corresponding eigenvalues are given by E, and P, with n € Ny,
respectively. From Eq. (2.1.16) it can be seen that the Lehmann representation of
the retarded and the advanced Green’s function differ in the sign of the small imagi-
nary part in the denominator. This is the reason why the retarded Green’s function
Ggf(k,w) has its poles in the lower half plane while the advanced Green’s function
Gg‘;‘(k,w) has its poles in the upper half plane. On the real axis the small, van-
ishing imaginary part requires that both Green’s functions are adjoint operators:
Ggf(k, w) = G%(k, w)*. Another important consequence of the small imaginary part
is that the time ordered Green’s function corresponds, depending on the energy, either
to the retarded or to the advanced Green’s function

Giik,w) w>wp

YVw e R 2.1.17
Ghok,w) w<wp “ ( )

G?W (k,w) = {

In the complex plane, away from the real axis, the small imaginary part plays no role
and all three Green’s functions are equivalent

G, (k,w) = G?fj(k,w) = Gg‘;‘(k,w) V3(w) >0 (2.1.18)

12



CHAPTER 2. THE INDIRECT EXCHANGE INTERACTION

From the analytic structure of the momentum space Green’s function it can be seen

easily that I(k,ky,--- ,k,,) can be written for fw < wr as an integral over advanced

Green’s functions and for Rw > wp as an integral over retarded Green’s functions.
wp

I= dw €™ Tr [(S;.0) G¥(k,w) (Si,.0) G (ki,w) - (S4,,.0) G* (ki w)]

—00

+/oo dw " Tr [(S;.0) G (k,w) (S,.0) G (k1,w) -+ (S;,,.0) G (kpm,w)] (2.1.19)

Since the singularities of the retarded Green’s function are in the lower half plane the
integral over the upper half plane is zero.

/ dw e Tr [(Si.0) G*%(k,w) (S;,.0) G (ky,w) - -+ (S;,,.0) G (kp,w)] =0 (2.1.20)
This identity allows us to change the range of integration in the second line of
Eq. (2.1.19). The two integrals parallel to the imaginary axis cancel each other and
due to the convergence factor exp(iwn) the integral over the arc vanishes. As a con-
sequence the contour integral may be turned into an integral over the real axis where
the retarded and advanced Green’s functions are pairwise adjoint operators.

I = /wF dw (Tl“ [(S,LO') GOR(km,w) (Sim-o') - GOR(kl,w) (Sil-o') GOR(k, w)]*

—00

~Tr [(S;.0) G (k,w) (Si,.0) G (ky,w) -+ (S;,,.0) GOR(km,w)]> (2.1.21)

Then we transform each Green’s function back to real space and use the symmetry
G%(r;,rj,w) = G°%(rj,r;,w) in order to bring the integrand to the form of two
complex conjugate terms. In this way Eq. (2.1.13) reduces to the form

FL 0 )\ m—+1 wWE N R
By = - Z_:O (5) Z /OO dw J(TI" [(Si.a) G (r;, 1y, w)

By01,00 0

X (S“U) GOR(I'Z'UI'Z'Q,Q)) o (Szm0'> GOR(rim, r;, w)D (2122)

It is important to stress that the trace must be generally taken over the product of .S;
matrices and Green’s functions GOR(rii,rij,w). Only under certain circumstances,
which are for example given in the spin-unpolarized electron gas, it is possible to
reduce the complexity of that expression.

Spin-unpolarized Electron Gas

There are plenty of examples in nature where it is reasonable to assume that the inter-
action is mediated by a gas of spin unpolarized electrons. In this case the Green’s func-
tion is diagonal in spin space and may be written as G?fj(ri, rj,w) = (5#,,GOR(rZ-, r,w).
After a substitution of G9(r;,r;,w) into Eq. (2.1.22) each individual addend of the
interaction energy factorizes into the product of an integral over retarded Green’s

13



2.1. THE INDIRECT EXCHANGE INTERACTION AT ZERO TEMPERATURE

functions G*(r;, r;,w) and a trace over o.S-matrices:

s (A" &
m=0 i1, im=1
wp
X / dw [GOR(ri, 1, w)G (1, 1y, w) - GOR(rm,ri,w)} (2.1.23)

The trace can be evaluated analytically and this leads, as shown in Appendix. A.1,
for even m to the result

Tr [(Ss,.0) (Siy.0) -+ (S;,,.0)]
=21 Z sgn(7) <Si7(o> 'Siw(1)> e (siw(m_@.swm_g))
v

% (St 2y X Sty | Si) (2.1.24)

while for odd m the trace takes the form

Tr[(S;.0) (S;,.0) -+ (S;,,.0)]

=23 sm(7) (S-St ) (S St ) (St v Si)  (2125)

Y

with ¢ = i¢ and the sum ZW taken over all possibilities to make inequivalent pairs
from the set of impurity spins {S;,S;,,---,S;, }. Each pair of impurity spins is either
connected by a dot or by a cross product. By convention, the interchange of indices
within a pair and the exchange of factors in the product of pairs does not contribute
to the sum with a new sequence. Provided that each pair is sorted by its indices in
ascending order the sign of each sequence sgn(+y) is determined from the total number
of interchanges of impurity spins. Due to the cross product the trace behaves, for
even m, antisymmetric under an inversion of the order of the indices {1,--- ,m}

Tr[(Si.0) (Si,.0) - - (Si,..0)] = —Tr[(S;.0) (S, .0) - - (Si,.0)] (2.1.26)

In contrast, for odd m, all spin pairs are connected by a dot product and the trace
behaves symmetric

Tr[(S;.0) (Si,.0) -+ (S;,,.0)] = Tr [(S;.0) (S;,,.0) - - (Si,.0)] (2.1.27)

The antisymmetry of the trace and the symmetry of the Green’s function G*# (ri,rj,w) =
G (r;, r;,w) require that in Eq. (2.1.23) all all even orders in m cancel.

14



CHAPTER 2. THE INDIRECT EXCHANGE INTERACTION

Lowest-Order Approximation

In Section 2.1 we have derived the interaction energy for a system of N magnetic
impurities. We have found an infinite series which may be interpreted as a sum of
loop diagrams that consists in each order of 2m space time vertices that are connected
by 2m propagators. For a homogeneous system as it is the case here, the Green’s
function decays with the impurity separation and we may truncate the series after a
certain order. The crudest approximation is to cut the series after the lowest order
(m = 1) which yields the following interaction energy

B\ wr
Eint:_% <§) Z/Oodw

i1

X %(Tr [(Si.0) R (x;, 1, w) (Si,.0) GO (x,, s, m]) (2.1.28)

A minimization of the interaction energy with respect to the relative coordinates of
both impurity spins is in general not possible since it requires information about the
Green’s function G*%(r;, r;,w) and the S;.c matrix. However, the situation is much
simpler in the spin-unpolarized system: in this case the interaction energy reduces
to the expression Eiy = >, J(ri,1;,) (Si-S;;) with the exchange integral J(r,ry,)
given by

2h (A Lorer OR OR
J(I‘Z‘,I'il) = —\| = dw & |:G (I‘Z‘,I'il,(,g))G (I'Z'I,I'Z',CU)} (2129)

T\ 2 e

From this expression it can be immediately seen that depending on the sign of the
exchange integral either a purely ferromagnetic or a purely antiferromagnetic cou-
pling is preferred. This approach was first used by Ruderman, Kittel, Kasuya and
Yosida to describe the nuclear spin coupling in the gas of conduction electrons and
is in literature well known as the RKKY approximation. When we discuss in the
following chapters the indirect exchange interaction in graphene or on the surface of
a topological insulator we use the expression '/RKKY interaction’ in order to indicate
that we stay in a regime where the lowest order approximation is applicable.

The Indirect Exchange Interaction at Finite Tem-
perature

Similar to the previous section we consider a system of N magnetic moments in a
gas of non-interacting electrons. The system is in thermal equilibrium and has the
possibility to exchange energy and particles with a reservoir. All possible equilibrium
states of the system can be described by the grand canonical ensemble with the
density matrix p = exp(—fK)/Z and the partition function Z = Trlexp(—FK)].
Here we have introduced the grand canonical Hamiltonian K = H° + W — uN with
the Hamiltonian of the non-interacting system H°, the contact interaction W, the

15



2.2. THE INDIRECT EXCHANGE INTERACTION AT FINITE
TEMPERATURE

particle number operator N and the chemical potential p. The temperature T" enters
into the density matrix through the parameter 5 = 1/(kgT) where kp stands for
the Boltzmann constant. For such a system the interaction energy is given by the
expectation value Ej,; = Tr (pWW) and in the following we will evaluate this expression
using finite temperature quantum field theory techniques. The first step is to rewrite
the interaction energy in the interaction picture

Tr (e—ﬁKOW,(hﬁ)U(hﬁ, 0))
Tr (e PE°U(RS,0))

By = (2.2.1)

where the perturbation takes the form W;(7) = exp(K°7/h)Wexp(—K°7/h) with
K° = H°—puN. The imaginary time evolution operator U(7, 0) satisfies the differential
equation —d/0t U(7,0) = W;(7)U(7,0). The solution of the differential equation is
given by U(7,0) = exp(K°7)exp(—K7) which may be expanded as

o

U(r,0)=>_ L (—%)m/o dry - - /0 AT T [Wi(71) - - - Wi(T)] (2.2.2)

m)!
m=0

where T, stands for the temperature ordering operator. In the temperature or-
dered product the operator with the highest temperature stands farthest to the left.
Eq. (2.2.2) allows us to rewrite the numerator and the denominator of Eq. (2.2.1) as a
perturbation series which factorizes in both cases into the product of all connected and
all disconnected diagrams. After cancellation there remains the following expression

=1 1\™ [ hp
Eint:z:om (_ﬁ) /0 dTl"'/O dTm
X Tr (0T [Wi(m) -+ Wi(ram) Wi (R5)]), (2.2.3)

with p° = exp(—=SK")/Z° and Z° = Tr[exp(—BK")]. Here it is important to stress
that the creation and the annihilation operator are, for real 7, not a pair of adjoint
operators. For a further analytical evaluation of the expectation value we insert the
perturbation W;(7) in its second quantization representation

(e}

SN Nt

m=0 T81 5 st o1, s hm Vi1,

h3 hB
y (Si-a;w) (Sil-aullﬂ) . (Sim-auml/m> / dry--- / drp,
0 0

X T (T (el ()i (1) €l ()i ()l (AB)ein (RB)] ) (2:2.4)
Similar to the zero temperature formalism we have chosen the interaction picture
where the two field operators are given by ¢;,(7) = exp(K°7/h)c;exp(—K°7/h) and
C}LM(T) = exp(KOT/h)cjﬂexp(—KOT/h). Then we use Wick’s theorem and replace the

16



CHAPTER 2. THE INDIRECT EXCHANGE INTERACTION

trace over the field operators by the sum of all contractions. Each order consists of m/!
connected diagrams that all give an identical contribution to the interaction energy.
Hence, the factor m! in the denominator of Eq. (2.2.4) cancels with the total number
of contractions and the interaction energy can be brought to the form

0 A m~+1 hB hB
Eint =h Z <_§> Z A dTl e /0v dTm Tr |:(SZO-) go(ria hﬁa ri177-1)
m=0 im

(ZEPREN

X (S’ll 0') go(rilaTla r,, 7—2) to (Slmo-) g()(rima Tm, Y, hﬂ)] (225)

with the finite temperature Green’s function defined as follows:

G (i, 7,15, T) = —ciu(7) el (7)°
S (pOTT [Ciﬂ<7)cj.y(7’)}) (2.2.6)

For a system that is invariant under translations and has no explicit dependence on
the temperature the Green’s function is a function of the difference 7’ — 7 and r; —r;,
only.
In the final step we take Eq. (2.2.5) and replace the Green’s function by its Fourier
transform 4°(r;, r;,,7)=1/(hB)>_, e~ GO (x, r;,iw,) and obtain the following re-
sult

(e%e] m-+1 [e%e]
B = %mzzzo <%> : Z Z Tr [(Si.a) go(ri,ril,iwn)

1,01, 4l N=—00

X (Sy,.0)G° (v, iy iwn) -+ (Si.0) G (xs 1a, iwy,) (2.2.7)

where w, = 7(2n + 1)/(hpf) stands for the Matsubara frequency. In the zero tem-
perature limit these discrete Matsubara frequencies go over into a continuum and the
Matsubara sum turns into an integral

“+00

! io L (2.2.8)
R 2~ o w 2.

Under these circumstances we recover the results that were derived in the zero tem-
perature formalism.

Spin-unpolarized Electron Gas

In the finite temperature formalism we have derived with Eq. (2.2.7) an expression that
allows to calculate the interaction energy as a function of the impurity configuration,
the chemical potential p and the temperature T" up to any order. For a Green’s
function that is diagonal gzy(ri,rj,iwn) = 0,,G°(r;,r;,iw,), as it is found for the
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2.3. OTHER COUPLING SCHEMES

spin-unpolarized electron gas, the interaction energy reduces to the form

1 o= /A"
Ei“tzﬁn;(?) > Tr((Sio)(Si.0) - (Si,.0)]

i1, yim
oo
X Z GOrs, 14y, 1w, ) GO (ri), Ty, i) - - - GO(ry, , T4, B0y ) (2.2.9)
n=—o0

In analogy to the calculation in the zero temperature formalism we can replace the
trace Tr [(S;.0) (S;,.0) -+ (S;,..0)] by Eq. (2.1.25) and restrict the sum ) to odd
order of m. But in contrast to Section 2.1 there is no need to introduce a real or
imaginary part around the product of Green’s functions since the Green’s function
G%(r;, 1, iw,) is real itself

G (vi, 715, 7)" = =T (0T [e5(r)el (7))
=G(r;, 7,1;,7) (2.2.10)

Here we made use of the cyclic invariance of the trace and the symmetry of the Green’s
function G°(r;, 7,1;,7) = G°(xj, T, 15, 7).

Lowest-Order Approximation

In the lowest order we may approximate the interaction energy by

Eyi = % (g) SN Tr((8i.0) GOri v, iwn) (Si,.0) GO(ri,, 1y iwy)] (2.2.11)

1,41 M=—00

For a system where the Green’s function is diagonal the RKKY interaction energy re-
duces to the form Fiy, = ), ; J(ri,ri,) (S;.S;,) with the finite temperature exchange
integral J (r;, r;,) defined as follows:

2 o
j(ri, I'Z‘l) = ;_ﬁ Z go(ri, ril,iwn)go(ril, ri,iwn) (2212)

In the latter case the coupling of the two impurity spins is depending on the sign of
J (r;,1;,) either ferro- or antiferromagnetic.

Other Coupling Schemes

Up to this point we focused on the indirect exchange interaction between impurities
such that each impurity couples to the gas of delocalized electrons on a single site.
However, as soon as the impurity couples to a selected set of lattice sites, which is
usually the case in a solid, the situation gets more complicated.
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CHAPTER 2. THE INDIRECT EXCHANGE INTERACTION

The Coherent Coupling Scheme

In the most general case, which is known as the coherent coupling scheme, each
impurity spin S; couples to a set of surrounding lattice sites M; and causes on-site
as well as inter-site spin-flip processes in its environment. Each scattering process is
weighted by an individual coupling constant A(a;, d;) that can be determined from ab-
initio calculation. Under these circumstances the Hamiltonian of the electron-impurity
interaction is given by the coherent sum of all scattering processes

:——ZZ Z /\ CL“ i aucdzz<0',uz/ Sz) (231)

w,v =1 a;,d;€M;

with u, v € {1, ]} and where a; and d; are lattice sites in the local environment of the
impurity spin S;. In the zero temperature formalism we get the following expression
for the interaction energy

-ty Y Y X% (;)’"“/m

m=014,i1, ,im @i, @iy ", Qip, diyd L1,~~, i o0
Mai, d) Mgy, diy) - - Mas,, di )3 (Tr [(Si.0) G*(xa,, 14, , )
X (85,.0) GO (xy, 14, 0) -+ (S1,.0) GOF(rg, )] ) (2.3.2)

Even the lowest order includes scattering between four lattice sites and this makes
the calculation of the interaction energy quite complicated.

The Incoherent Coupling Scheme

The complexity of the calculation reduces considerably in the incoherent coupling
scheme where only on-site spin-flip processes are taken into account while inter-site
spin-flip processes are neglected. The Hamiltonian for the electron-impurity interac-
tion now reads

5 N
V=-3 DD Maw) e o (0,0-85) (2.3.3)
wy =1 a;EM;
This coupling scheme leads to the following interaction energy

Bt = —— Z 3 Z (@)mﬂ /WF dw %(Tr (Si.0)

— o
m=014,i1, im i,y ,a

xG'"(r,,, r,, ,w) (Si.0) GOR(rai1 (Tay,w) - (Sy,.0) G (x,, rai,w)]) (2.3.4)
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2.3. OTHER COUPLING SCHEMES

In case that all impurity spins couple to the local environment in the same way the in-
teraction energy reduces to the linear combination of several site-to-site interactions.
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CHAPTER 3

The RKKY Interaction in Monolayer
Graphene

It is well known that the interaction between two magnetic impurities embedded
in a two-dimensional electron gas oscillates with the period of the Fermi wave vector
between a ferro- and an antiferromagnetic type and decays following an inverse square
dependent envelope function [36, 37, 38, 39]. Graphene has, in contrast to a usual
Schrodinger electron gas, a linear spectrum and a DOS that vanishes at the Dirac
point. In this chapter we study the impact of these new features on the RKKY
interaction. After an introduction to the graphene electronic properties we begin

(@) g S S (b) "1

b,
[ [ -] [
(] /o (-]
] o [ K& b
K2 Ky ax
B - o—

X — b

o ] ] Ks Ks !

Figure 3.1: The crystal structure [Fig. (3.1a)] and the Brillouin zone [Fig. (3.1b)]
of graphene.

with the RKKY interaction at zero temperature which, in fact, has already been
addressed in recent publications [1, 2, 3, 4, 5, 6, 7]. We use the Green’s function
formalism that we established in the first chapter. Then we proceed with the RKKY
interaction at finite temperature where we find an unusual increase of the interaction
with temperature. We conclude the chapter with the situation which seems most
realistic, namely the interaction between two plaquette impurities which we treat
within different electron-impurity coupling schemes.
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3.1. MONOLAYER GRAPHENE

Monolayer Graphene

The crystal structure as well as the electronic properties of graphene derive from the
remarkable ability of carbon to form various bonding configurations. In particular,
for this allotrope the two 2p- and one 2s-orbital combine to three degenerate sp-
hybrid orbitals which form in-plane o-bonds. With their bond angle of 120 degrees
these are responsible for the planar honeycomb structure. The remaining valence
electron contributes to a m-bond and can freely travel through the crystal. These
m-electrons determine the low energy electronic properties of the material. In the
simplest approximation where only the nearest-neighbor hopping of m-electrons is
taken into account the Hamiltonian reads [8, 9, 48]

H® = —t> (alb; + blay) (3.1.1)
(i)

with the nearest-neighbor hopping amplitude ¢ ~ 2.8eV and the operators aZT (bj)
creating an electron on site ¢ of sublattice A(B). The sum ) | ij) 1s taken over nearest-
neighbor sites of carbon atoms. In order to solve the Schrodinger equation HOU = ¥
we introduce the two Bloch sums

1 1q.1;
| oY) = mzeq-zajm (3.1.2)
€A
1 )
| 09 = > et | o) (3.1.3)

vV No icB

where | 0) is vacuum state and Ny is the number of unit cells in the crystal. In
the basis of the Bloch sums [Egs. (3.1.2) and (3.1.3)] and a low energy expansion in
vicinity of the corner of the hexagonal Brillouin zone K,, the Hamiltonian becomes
[89]

HY (k) = ( éfno(k) (I)mo(k)) (3.1.4)

where we introduced the function ®,,(k) = hvpk explivm + 101 with the Fermi
velocity vy = v/3at/(2h) and the phases 7, and &,, tabulated in Table (3.1). Here
a ~ 2.46A stands for graphene’s lattice constant and the wave vector k = q — K, for
a small deviation from the K point which is specified by the wave vector K,,, with m €
{1,2,---,6}. Furthermore we have introduced k as a radius and ¢y = arctan(k,/k,)
as a polar angle of k. The position of the six K points may be seen in Fig. (3.1).

With help of the Bloch theorem the number of inequivalent K points can be re-
duced to two. Expanded in vicinity of K; the Hamiltonian takes the simple form
H,(k) = o.k while the expansion in vicinity of K yields Hs(k) = o*.k where o
stands for the vector of Pauli matrices and o* for its complex conjugate. From that
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CHAPTER 3. THE RKKY INTERACTION IN MONOLAYER GRAPHENE

a 2
K><§—7T <o)

Table 3.1: The coefficients for the low energy expansion at each of the six high-
symmetry K points of the graphene Brillouin zone [89)].

representation it is immediately clear that the low energy spectrum consists of two
linear dispersing bands

with the chirality [ € {£}. In addition to that it can be concluded that the eigenstates
of HY are two-component spinors in a pseudospin space that is spanned by the Bloch
sums | ¥,4) and | Up) taken at a particular K,, point.

1 1
Vo(k) = —= | ; 5, (3.1.6)
V2 <l|<i>mgk;>

The corresponding density of states (DOS) is given by D, (R, E) = 27|E|/(h*viQpy)
where a € {A, B} stands for the sublattice and Qp, = 872/(v/3a?) for the area of the
Brillouin zone. In contrast to what one would expect for a common non-relativistic
two-dimensional electron gas the DOS grows linear by |F| and equals to zero at the
Dirac point.

The Zero Temperature Green’s function

The spectral properties can be used in order to calculate the low energy Green’s
function of graphene. Here we proceed as follows: first we derive the momentum
space Green’s function

Gk, E) = [E +in— HO (k)] (3.1.7)

where 7 is a small, positive real number. A subsequent Fourier transform then yields
the real space Green’s function

[\

G(R,E) =) GF(R,E) KnH) (3.1.8)

m
m=1
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with G2 (R, E) = 1/Qpy [ d*k exp(ik.R)GF(k, E). The latter integral can be taken
with the help of Appendix B which then leads, as shown in Ref. [89], to the following
result

m2i(E + in)

GBR,E) = —
m( ) ) hQU%QBZ

rLUF }LI,’UF

H} <E+z’nR> i®,,(R)H} (E+z‘nR>
Z'ﬂ1>:‘n(fi)hl% (%;"R) H} (@ R) (3.1.9)

X

hvp

where we introduced the function ®,,(R) = exp[iv,, +1d,,0] with 7, and §,, tabulated
in Table (3.1). Furthermore, the vector R is in polar coordinates given by the radius
R and the polar angle § and H](z) stands for the Hankel function of the first kind
and v*™-order.

The Finite Temperature Green’s Function

Thermodynamic properties of the system are encoded in the finite temperature Green’s
function. The momentum space representation of the finite temperature Green’s func-
tion can be obtained from the analytic continuation of Eq. (3.1.7), a procedure which
requires to replace the energy E + in by iw, + p and yields

GO (K, i) = h [ihw, + p — HO (k)] ™ (3.1.10)

where w, = (2n+ 1) /(h5) is the Matsubara frequency and u the chemical potential.
In the usual low energy approximation where only regions in the vicinity of each K
point contribute, the real space Green’s function is given by the finite temperature
analogue to Eq. (3.1.8) with the Fourier transform of G° (k, iw,) obtained as

271 (hw, — i)
BU%QBZ

gf]n(R7 an) = —sgn (wn)

sign (wy,) Ko (sign (wn) MR) o, (R)K; (sign (wn) MR)

- e e (3.1.11)
@, (R)K: (sign (wn) S R)  sign (wn) Ko (sien (wn) "2 R)

where K, (z) stands for the modified Bessel function of the second kind and v*"-order.
The temperature enters Egs. (3.1.10) and (3.1.11) through parameter § = 1/(kgT)
where kg is the Boltzmann constant.
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CHAPTER 3. THE RKKY INTERACTION IN MONOLAYER GRAPHENE

The RKKY Interaction in Monolayer Graphene at
Zero Temperature

We now turn to the RKKY interaction between two magnetic impurities which is
mediated by the low energy excitations in graphene. We assume that each impurity
spin couples to the itinerant electron spin density via a single site that belongs either
to sublattice A or B. The interaction energy for such a system is presented in Section
2.1 and it remains here to calculate the exchange integral J(R). After substituting the
appropriate matrix element of the zero temperature Green’s function into Eq. (2.1.29)
we obtain for two impurities on the same sublattice the result which can be similarly
found in Refs. [1, 2]

Jaa(R) = —4C faa(R) /EF dE (hi)?% [H& (M)Q (3.2.1)

—0 Vp hUF

with C' = —\?h2a?/(64nt?), the Fermi energy Er and the separation vector R = 1’ —r
where r (r') is the position of the first (second) impurity. The function fs4(R) =
1/2 Zim:l exp|—i (K,, — K,,) .R] is obtained from summing over the inequivalent K
points and may be rewritten as follows

faa(R) =1+ cos[Ks.R] (3.2.2)

where the wave vector Ko must be taken from Table (3.1). In the case where the two
moments reside on different sublattices the exchange integral in agreement with [1, 2]

reads
oa(®) = ~10gam®) [ am () [Hll (52

3.2.3
N hUF h’UF ( )

with the function fga(R) = 1/2 men:l exp[—i (K,, — K,,) .R] @} (R)®,(R) which
can be brought with help of the identity ®,,(—R) = —®,,(R) to the form

fea(R) =1+ cos [Ko.R + 7 — 26] (3.2.4)

In both cases the exchange integral separates into the product of an intervalley and an
intravalley contribution: J,o/(R) = 4C foo (R) 1o (R) where « (o) is the sublattice
of the first (second) impurity. The intervalley scattering function f,. (R) oscillates
on the scale of the lattice constant between the value 0 and 2. This function obeys
the identity foo(R) = fao(—R) and reflects the Dsj, symmetry of the graphene
lattice. The threefold rotational symmetry can be, for example, observed in zigzag
or in armchair direction: in all three zigzag directions fqa(R) takes the values 2,
1/2, 1/2 which are repeated periodically while for fg4(R) the values are 3/2, 3/2, 0.
In the armchair direction both functions take a constant value of 2. The intravalley
scattering function I, (R) is a result of the graphene spectral properties. It depends
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on the impurity separation R and on the Fermi energy Er. The sign of the intravalley
scattering function determines whether the coupling is ferro- or antiferromagnetic.

Undoped Monolayer Graphene

The effect of the linear energy spectrum in graphene on the RKKY interaction can
be especially well seen when the Fermi energy is at the apex of the Dirac cone, as it
is the case for the undoped monolayer. Despite the lack of the charge carriers in the
conduction band there is, as we will see, an indirect exchange interaction through the
virtual Dirac-Weyl excitations. It is convenient to rewrite the exchange integral for
two spins on the same sublattice as follows

8Chv
Jaa(R) = al

faa(R hm/ du 22 Jo(2)Yo(z) e (3.2.5)

with © = ER/(hvr). Then we replace the Bessel function of the second kind by
Yo(z) = 2/7R [ [;7 da’ o' Jo(2')/(a’* — 2?)]. For this identity it is important to stress
that x as well as 2’ have a vanishing, positive imaginary part which is important near
the singularity © = 2’ and comes from the retarded Green’s function in Egs. (3.2.1) and
(3.2.3). This imaginary part ensures the convergence of all zero temperature exchange
integrals. After replacing Yy(z) and after a subsequent partial fraction expansion the
exchange integral takes the form

8Chv
Jaa(R) = R3F faa(R)
X lim da: dx’ - i Jo(x) Jo(x') e=3@+e) (3.2.6)
50 - x+a) 0 o

From an interchange of x and 2’ it can be seen that the integral over the first term
with the minus sign in the denominator vanishes. There remains the integral over the
second term with the plus sign in the denominator which has no more singularities
that must be taken into account since the two-dimensional integral is taken over the
first quadrant where x as well as 2’ are positive valued. In this way it can be seen
that Eq. (3.2.6) is real valued and may be written as

SFLUF

Jaa(R) = 7

SO faa(R) lim 1(s) (3.2.7)

where the integral I(s) is defined as follows:

/ dx/ gy TEI @) s (3.2.8)

x4+
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The derivative with respect to s yields an expression which is well known as the
Laplace transform of zJy(x):

dgj) _— ( /0 " i :Ee_S””JO(x))Q

82

=3 (3.2.9)

Performing the integration with the boundary condition lim, . I(s) = 0 yields

s(1—s%) «

1
](S) = —g&l‘Ct&ﬂ(S) + m + E (3210)
Hence Ja4(R) takes in analogy to Refs. [1, 3, 4, 5, 6, 7, 35] the form
h’UF
Taa(R) = S C fan(R) (3.2.11)

In a similar way we can treat the interaction between two moments which reside on
different sublattices. In this case the exchange integral can be brought to the following
form

Sk
Jpa(R) = — RZFCfBA hm/ dx/ dz’

Tx ']1 )Jl( ,) e—s(x-‘,-a:’)

3.2.12
T+ 2 ( )

where the double integral can be explicitly calculated, which yields as shown in Refs.
1, 3,4, 5,6, 7, 35] the following result

3hUF
2R3

Joa(R) = — 208 0 fpa(R) (3.2.13)
We see that, in contrast to a usual two-dimensional electron gas, the RKKY interac-
tion in graphene oscillates, due to the functions f4a(R) or fpa(R), on the scale of
the lattice constant. It decays with a 1/R3 envelope function and it depends on the
sublattice position of both impurities: for two moments on the same sublattice the
coupling is ferromagnetic while for two moments on opposite sublattice the coupling
is antiferromagnetic.

Doped Monolayer Graphene

At higher Fermi energies the particular form of the energy spectrum becomes less
important and we obtain an RKKY interaction which highly resembles that in a usual
two-dimensional electron gas. This can be seen as follows: when the Fermi energy
is fixed at a value Er > 0 the Hankel function can be replaced by its asymptotics
for large arguments that is presented in Appendix B.3.4. Under these circumstances
the exchange integrals can be taken analytically. In the case of impurity spins on the
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same sublattice we get following Ref. [2] the result

4hvp o0 2 .. i
= — 1 20 _ 2ix 1 7 —sxT —
Jaa(R) 7 Cfaa(R) lim kFRda: PN { —¢ ( 4:6)] e
4 . hUF
= 3 Cfaa(R) | Epsin (2kpR) + — cos (2kr R) (3.2.14)

with kr = Er/(hvg). For two impurities on different sublattices the same calculation
yields in agreement with Ref. [2] the result

Vf CfBA(R) lim dr 1'2% |i_2621x (1 + 31 )1 o
s

JBA(R) = R3 550 e E

4 ) 5h
= —Tr—meBA(R) [EF sSin (2]€FR) + 4;}%F COS (2]€FR):| (3215)

The RKKY interaction decays with a 1/R? envelope function and oscillates, as ex-
pected, with the wave number 2k changing sign between a ferro- and an antiferro-
magnetic coupling.

The RKKY Interaction in Monolayer Graphene at
Finite Temperature

In the zero temperature formalism we found a non-vanishing RKKY interaction in
the undoped monolayer where the number of free charge carriers is zero. When the
temperature is increased electrons are excited into the conduction band leaving holes
in the conduction band and this launches two countervailing processes. On the one
hand more states become available which is expected to increase the strength of the
interaction and on the other hand the smearing of the Fermi surface is known to cause
an asymptotic damping of the interaction[39]. In the following sections we want to
figure out which of these processes dominates and whether the unusual features of
the RKKY interaction survive at finite temperature. To this end we consider, similar
to the previous section, two magnetic impurities in the gas of Dirac-Weyl electrons
and we want to describe the coupling of impurity spins as a function of the impurity
position, the chemical potential 1 and the temperature 7. For two moments on the
same sublattice we find the exchange integral given by

“+o00 . 2 . 2
JAA<R>=%OfAA<R> > (MT;“‘) Ko (signwn)h”gT;“‘R) (3.3.1)

n=—oo

while for two moments on opposite sublattice we get

“+o00 . 2 . 2
Taa(R) =~ 5Cma(R) Y (MT;“) I (signm) MT;“R) (332)

n=—oo
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with C' = —\?h%a?/(647t?) and w, = m(2n + 1)/(AB). In both cases the exchange
integral separates into the product of an intervalley and an intravalley function. The
intervalley scattering functions f44(R) and fga(R) are independent of the tempera-
ture and defined in Egs. (3.2.2) and (3.2.4).

Asymptotic Expansion

For large impurity separations we can replace the modified Bessel functions in Egs. (3.3.1)
and (3.3.2) by their asymptotics. We begin with the interaction between two moments
on the same sublattice which has the asymptotic form

“+o0o

Tua(R) = SpCIR) 3 san ()

hwy, — ZM 1 —2sign(w )h’wh"_i”R
—_— = — "ok 3.3.3
Tr 4R] ‘ Fo833)

n=—oo

In order to evaluate the Matsubara sum analytically we proceed as follows: first we
introduce the differential operator [d/(dR) + 1/(2R)| and get

4C R d 1 R —9sign (wy, ) n=in
Jaa (R) = — f?;( ) (E+ﬁi) kpT Z e ) (3.3.4)

Then we split the sum into two parts that are both taken over positive values of
n. Both parts correspond to a geometric series which can be taken and lead to the
expression

oo . hwn—1 2
kBTn:ZOO e*?Slgn(UJ’n) v ER = cos (%R) F (335)
where we defined T
F = B (3.3.6)
sinh (27rkBTR>
g

Finally we insert Equation 3.3.5 into 3.3.4, take the derivative with respect to R and
obtain the following result

Taa(R) =2L22R) [u sin (73—’“‘1%)

hUFR Up
2 hv 2
+7F; cos (mi R) - 4}; cos (h?iR)] : (3.3.7)
in which we have further defined
kT
Fy = b (3.3.8)

tanh (27rkBTR>

hvp
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For two moments on different sublattices the same calculation yields

Toa(R) = — 2S02R) [u sin <ﬁ2—“R)

hvpR Vp
2u 3hvp 24
+7F, cos (%R> + iR <% (thR : (3.3.9)

Here it is important to stress that the 7' — 0 and the p — 0 limit of Eq. (3.3.7) and
Eq. (3.3.9) cannot be taken at the same time since both expressions are obtained from
the large argument asymptotics of the modified Bessel functions which is, for p = 0
and T' = 0, no longer valid. The temperature dependence of the RKKY interaction
can be seen in 3.2a) where the asymptotic form of J44(R) (red dashed line) and the
exact exchange integral (black solid line) is plotted as a function of temperature for
the undoped monolayer. Both curves, the asymptotic form and the exact exchange

0.4 ‘ ] ‘ \ ‘ ‘ 10r L ‘ ‘ T
n a —J il s i b ]
m,? 0'355( ) - J:i (asymptotic)| | e 8 l|||:|\ ( )7
< <
(\-)/ 037 // | 9 6 |‘|\:\‘ T
= 0.25F ,’/2500,‘ T 7 = o4k I kégoKK :
c b2 E 4008 < L T = 500 K
o - SRS o \n h
= 0.2r Sa00f ] R 2 oL N — Asymtotic result
S015-  EM Tl ] 5 0 \\
A5k 5 e B W
% - P 100 s o b % or W=7 =
- 0.1+ Separation (a) —_ | \:" s | | |
. | . | . | . | . oL . . . . .
0 100 200 300 400 500 2 25 50 75 100 125 150
Temperature (K) Impurity separation (a)

Figure 3.2: The RKKY interaction in pristine and doped graphene. In Fig. (3.2a)
the exchange integral of pristine graphene J44(R) is plotted as a function of tem-
perature at an impurity separation of 50a. The black solid line represents the exact
result that is obtained from a numerical evaluation of Eq. (3.3.1) while the red dashed
line represents the asymptotic form which is given by Eq. (3.3.7). The interaction is
plotted in armchair direction where the function fas(R) takes a constant value and is
furthermore expressed in terms of the constant C x 10°. This means that the coupling
is ferromagnetic for positive values of J(C') and negative for negative values of J(C').
The inset of Fig. (3.2a) shows the temperature of the maximum for different impurity
separations. In Fig. (3.2b) the chemical potential is increased to a value of 0.1leV/
and the interaction between two moments on the A sublattice is plotted versus the
impurity separation for three different temperatures.

integral, are in particular at high temperature in good agreement and have a maxi-
mum at about 153K . At low temperature the interaction increases in both cases with
increasing temperature and this is in fact the region where the increasing number of
states that contribute to the RKKY interaction outweighs the exponential damping
that comes from the smearing of the Fermi surface. At high temperature the RKKY
interaction is governed by the exponential damping. This behaviour can be imme-

30



CHAPTER 3. THE RKKY INTERACTION IN MONOLAYER GRAPHENE

diately understood from Eq. (3.3.7): the temperature dependence is hidden in the
two coefficients F} and F,. The product of both coefficients increases linearly for low
temperature, has a maximum at some finite temperature and decreases exponentially
with the coefficient I} o exp|—27kpT R/(hvr)| for large temperature. Since the lat-
ter coefficient is a function of the product TR at larger separation R the exponential
decay gets stronger and reduces the temperature up to which the unusual increase
of the RKKY interaction persists. The temperature of the maximum plotted as a
function of the impurity separation is presented in the small inset of Fig. (3.2a).
When the chemical potential is increased to a sufficiently large value the RKKY inter-
action of a normal metal is recovered. The interaction oscillates with the wave vector
2kp and decreases at high temperature exponentially in the impurity separation. This
can be seen in Fig. (3.2b) which shows the evolution of the exchange integral as a
function of the impurity separation for different temperature.

Zero Temperature Limit

In the zero temperature limit we recover the results that we derived in Section 3.2.
This can be seen easily for undoped monolayer graphene: the Matsubara sum in
Eq. (3.3.1) and Eq. (3.3.2) turns into an integral which can be taken analytically.
After the substitution z = wR/vgr the exchange integral for two moments on the
same sublattice reduces to the form

8hUF +oo 2 2
jAA(R) = —7T2R3CfAA(R)/ dl’ x KO (|[L’|)
h
_ 2LRJZCJCAA(R) (3.3.10)

and for two moments on opposite sublattice the exchange integral converges to the
expression

8hvp oo 9 2
Toa(R) = =S Chna(®) [ do 22K (o)
3h
— 2£§chA(R) (3.3.11)

In the doped monolayer we can recover zero temperature results from an expansion of
Egs. (3.3.9) and (3.3.7) about 7" = 0. This procedure yields for J44(R) the following
expression

4 ) 2 hvg 21
jAA(R) _7TR2CfAA(R) (MSIH (ﬁUFR> + IR COS (thR)
2m2 k% R? 2u 3hvp 21
— 5 T? usin [ —R | — R 3.3.12
3202 [“ S (mF ) AR " (th >D (3:3.12)
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and for Jpa(R) we get

B 4 ) 2u Shup 21
Jpa(R) = 7TchﬁgA(R) (usm (thR) + iR < (hUFR)

212k% R* 2u hvp 21
B ] — — o 3.1
SRl {,u sin (hvp R) - iR COS (ﬁvp R)]) (3.3.13)

The RKKY Interaction between Plaquette Impuri-
ties

Up to this point we focused on the RKKY interaction between impurities that couple
via a contact interaction to the electron spin density at a single site. This coupling
scheme holds as long as the covalent radius of the impurity is significantly smaller than
the lattice constant of graphene. However, practically any atom with a substantial
magnetic moment, such as a lanthanide or a transition metal, has a covalent radius
that is much greater than the graphene lattice constant. For this reason it is more
realistic to assume that the impurity couples to a set of lattice sites and prefers a high
symmetry position in the graphene lattice rather than the position directly on top of a
carbon atom. In this section we study the RKKY interaction between two impurities
that are each sitting in the center of a hexagonal plaquette. We begin with a very
simple coupling model, the incoherent coupling scheme, where each impurity couples
only via on-site spin-flip to the six surrounding carbon atoms. In such a model the
exchange integral follows from a sum over all 36 site-to-site interactions

6 6
Tpiaq(R) = Z Z Toayoay (Taz = Tay) (3.4.1)

a;=1as=1

where r,, (ry,) and a4, (ag,) represent the position vector and the sublattice of a
carbon atom in the local environment of the first (second) impurity. As shown in
Section 3.2 each site-to-site exchange integral Ju, a,(Ta, — Ta,) is @ product of an
intervalley and an intravalley scattering function. For a further analytical evaluation
of Eq. (3.4.1) we approximate the intravalley scattering function by Z(|R+v|) ~ Z(R)
and use the identity foo/(R)+ faa/(R=V)+ foo (R+V) = 3, where R is the separation
of the two plaquette centers and v stands for a small lattice vector. This procedure
yields an RKKY exchange integral that is isotropic in space:

Tptaq(R) = 18C' [Zaa(R) +Zpa(R)] (3.4.2)

The exchange integral is here expressed in terms of the site-to-site intravalley scatter-
ing functions Zy4(R) and Zp(R), which can be for g =0 and T = 0 extracted from
Egs. (3.3.10) and (3.3.11). Substitution of these expressions into Eq. (3.4.2) leads in
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agreement with Refs. [1, 5] to the following result:

18Av
Fotag(R) = ==—5-C (3.4.3)

For 1 > 0 we use the leading order of the temperature expansion, Eq. (3.3.12) and
Eq. (3.3.13), and find the RKKY interaction asymptotically given by:

72hv 2
Tolag(R) = — WR?)FCCoS (#R) (3.4.4)

In pristine graphene the interaction is antiferromagnetic and decays as 1/R3. From
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Figure 3.3: The RKKY interaction between two plaquette impurities in pristine
monolayer graphene. From the geometry of the plaquette it can be seen that each
impurity can couple to the six surrounding lattice sites via four distinct nearest-
neighbor spin-flip processes. In the picture on the right hand side the ten distinct
RKKY exchange integrals [J(; j) are plotted as a function of temperature at an impurity
separation of 20a. The notation J; ;) means that the first impurity spin couples to
the gas of delocalized electrons via it" and the second impurity couples via j** nearest-
neighbor spin-flip process. The interaction is expressed in terms of the constant C.

Eq. (3.4.4) it can be seen that the unusual 1/R?® decay holds even for doped monolayer
graphene where surprisingly the 1/R?-order of the site-to-site exchange integrals can-
cels and the interaction oscillates with the period which is determined by the chemical
potential between ferro- and antiferromagnetic types.

Naturally there arises the question how robust the result is under a change of the lo-
cal electron-impurity coupling scheme. In order to figure this out we now turn to the
most general case where each impurity couples to the six surrounding carbon atom
sites via on-site as well as inter-site spin-flip process, as introduced in Sec. 2.3.1.
From the geometry of the plaquette, shown in Fig. (3.3), it is clear that there are four
such processes: the on-site and the first, second, and third nearest-neighbor spin-flip
process which are labeled by the numbers i = 0,1, 2,3. Accordingly, the RKKY in-
teraction between two plaquette impurities may be written as a linear combination of
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4 x 4 exchange integrals of the type [J(; ;) that describe in each case the coupling of
the first (second) impurity to the gas of delocalized electrons via a ith (jth) nearest-
neighbor spin-flip process. Due to the symmetry J;; = J(; there are only ten

‘ \ ‘ \ ‘ \ . T T w -
— | h t < L — Incoh =3 B
-1 (a) ° l\rl]ggr:srfﬂeighbor coherent| | 8 15 (b) — l\rl]gaoreesrt?g:ai(g;]hbor)coherent (n=2)
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- ] s |
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Figure 3.4: The RKKY interaction between two plaquette impurities in pristine
and in doped monolayer graphene at zero temperature for three different coupling
schemes: incoherent, nearest-neighbor coherent and fully coherent. In pristine mono-
layer graphene the RKKY interaction decays monotonically as R™™ with a power
that depends significantly on the local coupling scheme. In Fig. (3.4a) the exponent
n = logyy [J(R)/J(Ry)] is plotted as a function of the impurity separation, where
Ry is to the largest separation that can be calculated within floating point precision
(= 35a). In Fig. (3.4b) the chemical potential is increased to 0.1leV. The RKKY
interaction oscillates in armchair direction with the period of the chemical potential
and decays as R~2, in both coherent coupling schemes, and as R~3, in the incoherent
coupling scheme. For presentational reason the exchange integral of the fully coherent
coupling scheme is multiplied by 10°.

distinct exchange integrals. These exchange integrals are plotted in Fig. (3.3) as a
function of temperature at zero chemical potential and an impurity separation of 20a.
It can be seen that the choice of the coupling scheme does have a serious impact on
the form of the RKKY interaction: J,0), J,2) and J(2,2) decrease monotonically
while J(1,1), Ja,3) and J(33) increase monotonically with temperature. In all other
cases the exchange integral is zero. For the total exchange integral of the plaque-
tte impurity which corresponds to the linear combination of the individual J; ;s it
is essential to know how the different processes are weighted relative to each other.
A reliable answer would require a detailed information about the orbital structure
of the impurity which then allows to determine by ab initio calculation the precise
electron-impurity coupling scheme. Rather than providing this specific information
we present here exemplarily three possible coupling schemes: the incoherent coupling
scheme, the nearest-neighbor coherent coupling scheme and the fully coherent cou-
pling scheme. The incoherent coupling scheme takes only on-site spin-flip processes
into account and was discussed in an analytical approach earlier in this section. In
the nearest-neighbor coherent coupling scheme only on-site and inter-site spin-flip
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processes between nearest-neighbor carbon atoms contribute and in the fully coher-
ent coupling scheme all possible scattering processes are taken into account. These
three coupling schemes are compared in Fig. (3.4) at 7" = 0 and under the assumption
that all spin-flip processes are weighted by the same coupling constant. From the
picture on the left, where the chemical potential is set to zero, it can be clearly seen
that the RKKY interaction shows an unusual 1/R" decay rate in the fully coherent
coupling scheme. This decay rate holds as long as all coupling constants are the
same. When different coupling constants are used the fully coherent coupling scheme
is dominated by the usual 1/R* decay which is also found in the other two coupling
schemes. In the doped monolayer the RKKY interaction decays in the incoherent
coupling scheme as 1/R? and in both coherent coupling schemes as 1/R?. From these
results we have to conclude that the RKKY interaction is very sensitive to the local
coupling scheme. This is an important difference to a common electron gas which
arises from the multivalley structure of the graphene spectrum.
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CHAPTER 4

The RKKY Interaction in Bilayer
Graphene

Bilayer graphene is a compound of two graphene layers that is held together by van-
der-Waals forces. Since these forces are weak compared to the in-plane covalent
bonding the distance between the two layers is much greater than the lattice constant
of graphene. Another consequence of the weakness of the interlayer coupling is that
various stacking configurations are possible. In this work we shall consider two of
them: the AA stacking and the most common AB stacking (known as Bernal stacking,
which is realized in graphite). The interlayer bonding, albeit weak, has a serious effect
on the electronic properties of the bilayer. This can be seen, for example, at the band
structure close to the Dirac point where the dispersion is parabolic for AB-stacked
bilayer graphene and linear for AA-stacked bilayer graphene. The interesting form of
the spectrum manifests in an unusual RKKY interaction which is the subject of the
current chapter. We start with the RKKY interaction in AA-stacked bilayer graphene

Figure 4.1: Illustration of AA-stacked bilayer graphene. The crystal structure
[Fig. (4.1a)] and the band structure in vicinity of the K point [Fig. (4.1b)].

which is less common in nature. It serves here mainly as an introductory model that
allows us to study the interference effects that arise from the interlayer coupling. Next
we come to AB-stacked bilayer graphene which is indeed a stable configuration that
is realized in nature and we shall study in this system the effect of temperature on
the RKKY interaction. Finally we conclude the chapter with the RKKY interaction
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CHAPTER 4. THE RKKY INTERACTION IN BILAYER GRAPHENE

in an AB-stacked bilayer to which an external layer-symmetry breaking electric field
is applied.

A A-stacked Bilayer Graphene

The AA-stacked bilayer is, perhaps, the simplest example of a few layer graphene. In
that stacking configuration the two graphene layers are sitting directly on top of each
other so that all carbon atoms in the top and in the bottom layer are vertically aligned.
The Brillouin zone is the same as for the graphene monolayer with two inequivalent
K points. The low energy excitations in the vicinity of each K point can be described
by a Hamiltonian that takes into account, in addition to the usual nearest-neighbor
in-plane hopping of electrons, also the vertical interlayer hopping. In the basis of the
four Bloch sums | UX ), | U% ), | UX ) and | ¥% ) the Hamiltonian reads [90, 92|

0 k) —to

d* (k) 0 0 —t,
HY (k)= |["m - 4.1.1
0 —t; P (k) 0
where m € {1,--- ,6} labels the position of the K point in the Brillouin zone, ¢, stands

for the interlayer hopping constant and ®,,(k) is defined according to Eq. (3.1.4). It
may be easily seen that the spectrum of the Hamiltonian consists of two Dirac cones
which are shifted relative to each other by 2¢, ~ 0.8eV

€0 (k) = o [hvpk + o't ] (4.1.2)

with 0,0’ € {£} and the Fermi velocity vy = v/3at/(2Rh). In the latter expression
a ~ 2.46A is the lattice constant and t &~ 2.8¢V the nearest-neighbor hopping ampli-

A A-stacked BLG AB-stacked BLG

|E| <t | |E]>tL |E| <ty |E| >t
pay(E) 2t1 2|E |E| 2|E
pByo(E) 2t 2|F| |E| +t, 2|E|
p(E) 8t, 8| F| 202|E| +1ty) 8| F|

Table 4.1: The DOS of AA- and AB-stacked bilayer graphene [90, 91]. For
each system the DOS can be brought to the form D,,(E) = 2Dy pa,(E) with
Dy = 7/(2h*v:Qpz). The first two rows of this table define the function p,,(E)
with « € {A, B} and | € {1,2}. The last row defines the function p(FE) which is
obtained from the sum over all four sites.
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4.1. AA-STACKED BILAYER GRAPHENE

tude. The corresponding DOS is presented in Table (4.1). In contrast to the DOS of
monolayer graphene the DOS of AA-stacked bilayer graphene takes a constant value
at low energies and has a kink, i.e. a discontinuity in the derivative, at the apex of
the upper and lower Dirac cone.

The RKKY Interaction at Zero Temperature

The emergence of a second Dirac cone in the spectrum opens an additional scattering
channel and results in a DOS that is, at low energies, constant. This should have a
great impact on the RKKY interaction and the goal of this section is to show how the
form of the interaction changes when the additional channel is switched on. To this
end we consider two magnetic impurities that both couple via the site of a carbon
atom to the gas of delocalized electrons. The interaction energy can be obtained from
the standard Green’s function approach that was introduced in Section 2.1.2. This
approach requires the Green’s functions of AA-stacked bilayer graphene which is in
the low energy approximation given by

[\

G"(R,E) =) GF(R,E) exp (iK,.R)

m=1

where G'#(R,, E) is the real space Fourier transform of the retarded momentum space
Green’s function G2, (k, E) = [E +1in— H? (k)] which is tabulated in Appendix C.1.
Using this result, we can calculate the exchange integral in each of the four distinct
cases where the two impurities reside either on the same or on opposite sublattice in
the same or in the opposite layer

o0

Taas(R) = Chaa, (R) [

Ep

dE S <|:Z+Hé (:*R) + (1) H} (z‘R)r) (4.1.3)

[e.o]

Touay (R) = Cfon (R) /

Ep

IE S ([Z+H11 (+*R) + (1) 2~ H] VR)D (4.1.4)

with C' = —\2h2a?/(2567t?), 2T = (E+in+t.)/(hwp) and 2~ = (E+in—t,)/(hvp).
The function H}(z) stands for the Hankel function of the first kind and vth order and
R is the impurity separation vector which is in polar coordinates given by the radius
R and the polar angle . Each exchange integral is the product of an intravalley
contribution I, (R) and an intervalley scattering function f..(R). The intravalley
functions may be directly read off from Eqs. (4.1.3) and (4.1.4) and the two intervalley
scattering functions are defined as

fA1A1 (R) = fAA(R) (415)
fBlAl (R) - fBA(R)

with f4a(R) and fpa(R) given by Egs. (3.2.2) and (3.2.4). The exchange integrals
can be evaluated numerically at any distance and at any Fermi energy Er. However,
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CHAPTER 4. THE RKKY INTERACTION IN BILAYER GRAPHENE

for an analytical investigation it is convenient to consider the case of large impurity
separations where Eqgs. (4.1.3) and (4.1.4) can be written as

b 120
Jusaty (R) = (—1)= 1 f s (R)

X lii% dE R ([ Zrel Ry (—1)”_[\/2_76”71%] 2) e 5 (4.1.7)
S EF

With Ve = 1 — 0par, @ € {A, B} taken for the sublattice and [ € {1,2} for the
layer of each impurity. The Kronecker Delta 0, is 1 if both impurities are on the
same sublattice and 0 if both impurities are on opposite sublattice. Furthermore it is
important to stress that the energy has always a small, positive imaginary part which
is important near the singularities of the Green’s function and which ensures via an
exponential damping factor the convergence of the exchange integrals. The integral
can be taken by integration by parts. This procedure yields in the leading order the
following result

o Ch’UF
T R2

+2(—=1)" !/ |kt k| sin <[/€j§ +kp] R+ g@ [t — Eﬂ)] (4.1.8)

with k= (Ep +t1)/(hvr) and kp = (Ep —t,)/(hvg). A further simplification of
this expression is possible in the limit of very high or very low Fermi energy and in
the case where the Fermi energy lies exactly at the apex of the upper or the lower
Dirac cone. We start with the limit Fp << t; where Eq. (4.1.8) can be brought to
the form

Jogar, (R) =(—1)"= farar, (R) [k; sin (2kfR) + ky sin (2kpR)

s ACH,
Jala'z’(R) = (_1)l e T R2 fo‘lo"l’(R)
X oS 2EFR cos” hlfi—i-?r[l’—l]—7r (4.1.9)
hUF hUF 2 4 o

The exchange integral factorizes into the product of two oscillatory parts. On the
one hand there is an oscillation with the wavelength \| = whvg/t; which arises from
the interlayer scattering of electrons. On the other hand there occurs the usual Fermi
energy dependent oscillation with the wave length A\p = whvp/EFr that was already
found for the interaction in monolayer graphene. In the limit Er — 0 the wave length
of the latter type of oscillation continuously increases. Remarkably, Eq. (4.1.9) is
valid for the case E'r = 0 where solely one type of oscillation with finite wave length
AL = mhop/(2t)) remains. This case is particularly interesting since the interaction is
now exclusively determined by sublattice and layer position of both impurities. The
interaction is antiferromagnetic for even values of | — I’ + v/, which is for example
the case when the two moments reside on the same sublattice of the same layer,
and ferromagnetic for odd values of I — I’ + v4. The low energy approximation,
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Figure 4.2: The RKKY interaction in AA-stacked bilayer graphene at a Fermi
energy of 0eV, 0.05eV, 0.4eV and 0.8eV. Plotted is the exact exchange integral and
the asymptotic form of the interaction as a function of the impurity separation for
two moments that reside on sublattice A of the same layer. The interaction is always
plotted in armchair direction and measured in terms of the constant C. Negative
values of J(C') correspond to antiferromagnetic coupling.

Eq. (4.1.9), becomes less and less accurate for higher Fermi energy and we have to
go back to Eq. (4.1.8). Especially, at Er = ¢, we obtain the asymptotic form from
a substitution of kn = 0 and k) = 2t, /(hvr). In this way we find an interaction
that oscillates with the period \; = whvg/(2t,). It is interesting to note that this
is exactly half of the wavelength which is found for the case Er = 0. Finally in the
limit Er >> t, the Eq. (4.1.8) can be approximated as

ACEp

Jala/l/<R) - (—1>ll_l+yaa/ 7TR2 falo/l/ (R)
X sin QER cos® t—LR +Z (=1 (4.1.10)
h’UF hUF 2

This expression consists of a short wavelength oscillation with the period A\p =
mhup/Epr which is modulated by another oscillation with the period A\| = mwhvg/t, .
The modulation with the long wave length is responsible for the beats which are
seen in Fig. (4.2d). In the pictures we depicted the exact exchange integral which
is obtained by numerical integration of Eq. (4.1.3) as well as the asymptotic form,
Eq. (4.1.10). The Fermi energy is set to 0.8¢V. The other three cases of doping can
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CHAPTER 4. THE RKKY INTERACTION IN BILAYER GRAPHENE

be seen in Figs. (4.2a)-(4.2¢). In all four cases the asymptotic form agrees for R > 10a
very well with the exact exchange integral.

AB-stacked Bilayer Graphene

The most common realization of a graphene bilayer is the AB-stacked bilayer. In
this stacking, the A-sites of both layers are vertically aligned while the B-sites of one
layer are directly below or above of the center of the hexagonal plaquette of the other
layer. In a model where only nearest neighbor in-plane and only the vertical interlayer
hopping of electrons is taken into account the low energy physics at the K point is
determined by the Hamiltonian [45, 47, 48, 91]

0oy [P5EK) 0 0 0
H° (k) = " 0 0 () (4.2.1)
0 0 Pnk) 0

with ®,,(k) taken from Eq. (3.1.4) and the interlayer hopping amplitude t, ~ 0.4eV.
The spectrum of the Hamiltonian is given by

t—l+a'\/h2v2k2+i
2 F 4

with 0,0’ € {£}. As may be seen in Fig. (4.3b) all four bands follow at low energies
a parabolic dispersion. The two lowest bands touch at the Dirac point while the two

(3 N L

€oo’ = O

(4.2.2)

K

Figure 4.3: Illustration of AB-stacked bilayer graphene. The crystal structure
[Fig. 4.3a)] and the spectrum in vicinity of each K point [Fig. 4.3b)]. At high doping
the Fermi energy (dashed line) lies in the two band region of the spectrum. The two
Fermi wave vectors k}. and kp are highlighted as a red and a black arrow.
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4.2. AB-STACKED BILAYER GRAPHENE

outer ones, the bonding and antibonding bands, are separated by the gap of 2t;. An
analytical expression for the DOS is presented in the right hand column of Table (4.1).
Evidently, the DOS is particularly interesting inside the bonding-antibonding band
gap where it takes different forms on sublattice A and B: on the A-sites the DOS
starts at zero and grows with the absolute value of E. On the B-sites the DOS starts
at a finite value and is significantly enhanced inside the bad gap. At the edge of the
bonding-antibonding gap there is a discontinuity in the DOS on the A-sites and a kink
in the DOS on the B-sites. Finally, in the two band region, the disparity between A-
and B-sites disappears.

The RKKY Interaction at Zero Temperature

The electronic properties of AB-stacked bilayer graphene are quite different from those
of monolayer and of the AA-stacked bilayer. The AB bilayer has two non-equivalent
sites in the unit cell and at each K point a parabolic band structure with two distinct
regions, the bonding-antibonding band gap and the two band region. The intention of

OélOé;/ IalO‘;/ (R)
A1A1 jl;p dE % Ry ([H& (Z+R) +H& (Z_R)]Q)
Ar A, L B i s ([H (HR) - Hy (- R))

BB | [ am Sk s ([ R+ o (R

BBy | [ dB Mgk S ([0} (7 R) — (- H) (- R)]°)
B A [zTH! (2*R) + 2z~ H{ (z*R)]2)

By Ay dE

Lo a5
Jor 175

(2T H{ (7 R) — 2~ H{ (Z_R)]2)

Table 4.2: The six distinct intravalley scattering functions I, (R) for AB-stacked
bilayer graphene [54]. In this table H,(2*R) stands for the Hankel function of the
first kind and vth order. The convergence is ensured by the positive real part of
R =[(E+in)(E +in+t)]"* R/(hvr) where R denotes the impurity separation.

this section is to study the effect of these features on the RKKY interaction. To this
end we consider similar to Refs. [52, 53, 54] two magnetic moments that couple on a
single carbon atom to the gas of delocalized electrons. In order to determine the nature
of the impurity spin coupling. We take the zero temperature Green’s function which
is given in Appendix C.2 and calculate according to Eq. (2.1.29) the RKKY exchange
integral for a given Fermi energy and given impurity positions. The symmetry of
the lattice implies that there are six impurity configurations to distinguish: two sites
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CHAPTER 4. THE RKKY INTERACTION IN BILAYER GRAPHENE

on the same sublattice, either A or B, and two places on opposite sublattice which
are located either on the same or on opposite layer. In all these cases the exchange
integral separates into the product of two functions

JOCLO/Z’<R) = C1.]604104/11 (R>[Oélo/l/(R) (423)

with C = —\%2h2a?/(647t?) and where « (o) stands for the sublattice and [ (I') for the
layer of the first (second) impurity. The scattering in the vicinity of each K point is
described by six distinct intravalley scattering functions I, (R2) which are presented
in Table (4.2) while the scattering between the K points is encoded in the three fast
oscillation functions which are given by

fA1A1 (R) = fAA(R> (424)
fe.4(R) = fpa(R) (4.2.5)
e, (R) = 14 cos[Ky.R + 40] (4.2.6)

with f44(R) and fpa(R) defined according to Egs. (3.2.2) and (3.2.4). The relation
between these three functions and the six distinct impurity configurations can be read
off from the Table (4.3).

Ay By Az By

A1 | faa(R) | fia(-R) | faa,(R) | fa(R)
Bi| feaR) | faa,(R) | fea(R) | [ (-R)
As | faa(R) | feia,(-R) | faa,(R) | fga,(R)
By | fea(-R) | fo.s(R) | f,a(=R) | fa,a,(R)

Table 4.3: The relation between the three distinct fast oscillation functions fa, a,,
fB1a,, and fp,p, and the 16 impurity configurations.

Zero Doping

The disparity between the A- and B-sites is particularly evident at zero doping, where
the Fermi energy lies at the apex of the low energy bands. On the A-sites there are
no states in the conduction band which could contribute to the RKKY interaction
while on the B-sites a finite number of states is available. This is the reason why the
exchange integrals that are presented in Table (4.2) have, not only in its strength but
also in its decay rate, an extraordinary strong dependence on the sublattice position
of both impurities. The unusual behavior at zero doping can be understood in a sim-
plified model where only two low energy bands of the bilayer are included. This model
has the advantage that it is analytically tractable and it is based on the observation
that the exchange integrals are dominated by the contribution of the stationary point
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4.2. AB-STACKED BILAYER GRAPHENE

at E = 0 while the oscillations at higher energies average out. The model preserves
the data of Table (4.2) and requires solely to redefine the two arguments of the Han-
kel functions. In such an approximation the interaction between two moments on
sublattice A may be written as

4Ch4'0 e ' 2
T (R) = 25wy [™ e a2 [ aamato) - (1 2o o)

(4.2.7)

2

with x = z*R and z* = /(E +in)t, /(hvr). For a further analytical evaluation of
Eq. (4.2.7) we replace the Bessel functions Yy(z) and Ky(z) by their integral repre-
sentation which is displayed in Appendix B [Eqs. (B.2.1) and (B.4.1)].

80h4 5 /J Ja(z! )
‘]AzAz/( ) UFJCAIA1 hm {/ d;p/ dz’ rr 0 ) 0( )e_s(x2+x2)

3 6 2 _ 2
Tt R T T

l+l / dx/ dx / ‘r T JO )JO( )efs(it2+x/2) (428)

"% + 22

It can be easily shown that the double integral in the first line gives zero so that there
remains only the contribution of the double integral in the second line

JAlAl’ (R) =(-1) ﬂ_t:iRﬁ

faa, (R) lim (s) (4.2.9)

with the function I(s) defined as follows

13 /
/ dx/ gy EEI@ ) atary (4.2.10)

2 4 22

Since there is no more singularity in the integrand, both variables z and z’ can be,
from now on, considered as purely real. This allows us to apply the usual trick: first we
take the derivative with respect to s and obtain a product of two Laplace transforms
which are both of the form [ dx 23Jy(z)e™". The Laplace transform of 23Jy(z) is
a well known expression and it is given in Eq. (B.5.3). A subsequent integration over
s with the boundary condition lims , I(s) = 0 then yields the function I(s):

1 2 32 128

Finally we take the s — 0 limit of Eq. (4.2.11) and insert the result into Eq. (4.2.7)
obtaining the following RKKY interaction [52]

1320 (hvp)?

Jaa,(R) = (=1)
L WtiRG

faa, (R) (4.2.12)
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The other four impurity configurations are treated in the same way and the results
are presented in Table (4.4). Using this model we find the RKKY interaction that is
layer antisymmetric and in its strength and its decay rate very sensitive to the sub-

0— ‘ ‘ ‘ O—
(a) —Jata -0.5¢ (b)
- _2__ LJA1A1
b —Jas L I e——————— -
GCJ A1B2 o
[ _ '-:-_1 5, _
S -4 Jerery BT ,
w |BiB2]| -2r Jnieiatge|
N~ - - I Jarararaz
B -2.5+ 8181YB182|
L L L L | L L | L L L |
40 80 120 40 80 120
Impurity separation (A) Impurity separation (A)

Figure 4.4: The RKKY interaction in pristine AB-stacked bilayer
graphene. Fig. (4.4a) shows the power of the algebraic decay n =
10g1g (Jayary (R)/ Jayary (Ro)) /logyo(R/Ro) where R, = 173.2A is a reference
distance at which the interaction is assumed to be well described by the power
law R™". Fig. (4.4b) shows the ratio of the intralayer and the interlayer exchange
integrals. Both quantities are obtained from numerical evaluation of Table (4.4). It
can be seen that the RKKY interaction is for impurity separations greater than 60a
layer antisymmetric and decays as R~% for two moments on sublattice A, R~* for
two moments on different sublattice and R~ for to moments on sublattice B.

lattice position of both impurities: for two moments on sublattice A the interaction
decays as R~%, for two moments on opposite sublattice as R~*, and for two moments
on sublattice B as R~2.

In order to figure out how accurate the two-band model provides the RKKY inter-
action we compare in Fig 4.4 the analytical result to a numerical calculation which
includes the full four-band structure. This figure shows the two quantities of main
interest, the power of the algebraic decay and the ratio of the intralayer and the in-
terlayer exchange integral, plotted as a function of the impurity separation. It can be
seen that for low impurity separations the power and the ratio deviates significantly
from the analytically predicted values. But for impurity separations greater than 60a
we find a very good agreement: the exponent converges to —6 for two moments on
sublattice A, —4 for two moments on different sublattice and —2 for two moments
on sublattice B. The ratio of the intralayer and the interlayer exchange integrals
limits to —1 which confirms the layer antisymmetry of the system. Interestingly, the
convergence to the expected value is very fast for two moments on sublattice B and
particularly slow for two moments on opposite sublattice.

We conclude that the RKKY interaction in the undoped AB bilayer is for large im-
purity separations well described by the two band model. But for small impurity
separations the contribution of the high energy bands must be included. Taking these
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Figure 4.5: The RKKY interaction in AB-stacked bilayer graphene plotted in arm-
chair direction as a function of the impurity separation. The Fermi energy is increased
from 0.05eV in the first row to 0.4eV in the last row. Each column represents a dif-
ferent sublattice configuration: the first column shows two moments on sublattice A,
the second column two moments are on opposite sublattice and the third column two
moments on sublattice B. The exchange integral is measured in terms of the coupling
constant C'.

bands into account breaks the layer antisymmetry of the two band model and has an
impact on the decay rate.

In the Bonding-Antibonding Band Gap

When the Fermi energy lies in the bonding-antibonding band gap the RKKY in-
teraction can be treated analytically in an asymptotic expansion for large impurity
separations: each exchange integral consists, according to Table (4.2), of two Hankel
functions and in the band gap one of these Hankel functions has a purely imaginary
argument. The contribution of this Hankel function is, for large impurity separations,
damped exponentially and the form of the RKKY interaction is hence governed by
the oscillatory character of the remaining Hankel function with purely real argument
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2 2izTR

. o e _sE2?
Jaa,(R) =— MQ—U%RCfAlAI(R) lim /EF dE E* R < = ) e P (4.2.13)

with 2T = \/(E +in)(E +in + t1)/(hvr). Integration by parts leads for the exchange
integral J4,4, (R) to the result [54]

2Ep +1t,

Taa, (R) = 207"

na(Er)na(Er) faa, (R)sin (2kfR) (4.2.14)
with na(Er) = |Ep|/(2|Er| + t1). The results for all other impurity configura-
tions may be seen in Table (4.4) and are plotted in Fig. (4.5) together with the
exact exchange integral. The picture reveals that the RKKY interaction is, at low
Fermi energy and small impurity separation, layer antisymmetric and still described
by the R~ power law from Section 4.2.1. When the Fermi energy is increased the
interaction starts to oscillate with the Fermi wave vector of the low energy band
ki = \/Er(Er +t,)/(hvr). In addition to that the interaction changes its decay
rate to 1/R? and becomes layer symmetric. Under these circumstances the asymp-
totic form that we derived in the current section is applicable for large impurity
separations and in the limit Er — t; where it agrees especially well with the exact
exchange integral. However, there is one exception: for Jyu, 4, (R) the asymptotic form
becomes less and less accurate as the Fermi energy approaches the point Ep = t,.
In contrast to what one would expect from Eq. (4.2.14), the RKKY interaction is at
Er =t layer antisymmetric and the strength of the RKKY interaction is suddenly
comparable to the strength of the interaction between two moments on site B. This
behavior can be understood from the fact that the Hankel function H, (2~ R) diverges
logarithmically in the limit Er — t,. For two moments on opposite sublattices and
for two moments on sublattice B the logarithmic divergence is ruled out by the al-
gebraic coefficient in front of the Hankel functions. However, for two moments on
sublattice A the whole integrand divergences and for this reason it is necessary to
perform the exact integral which takes the irregular behavior of the divergent Hankel
function into account.

At the Gap Edge

At the edge of the bonding-antibonding band gap the real space Green’s function that
describes the propagation between two A-sites diverges logarithmically. In this case
the usual stationary phase approximation from the previous section does no longer
hold and it is necessary to go back to the exact exchange integral. As a first step
towards an analytical evaluation we write Jy4, 4, as follows

Taae = Cfan, L0+ 100, + 18+ 190, (4.2.15)
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with the four integrals 11(41%, 1—5121)141/’ 11(4321 and [X?AV given by
00 2E2
Y = / dE Jo(z"R)Yo(2 "R 4.2.16
AA O Gy o(z"R)Yo(:" R) ( )
1%, = (—)" /OO dF 25 Jo(z"R)Yy(2*R) (4.2.17)
AlAz/ - i (h/UF)Q (1€ 11€4 /N
1) /Oo a5 2 Jo(z"R)Yy(2"R) (4.2.18)
= _— z ya L.
AA L (hop)? 0 0
1Y, = (= /oo a5 25 (" R)Yy(2"R) (4.2.19)
AlAl/ - tl (h'UF)2 0 0 oL

where Jy(x) and Yy(z) stand for the Bessel function of the first and second kind. This
form is particularly convenient since it consists of two groups of integrals that exhibit
completely different behaviour at the gap edge: the first two integrals are regular in
the domain of integration since the argument of the Bessel function of the second kind
Yo(2T R) is always finite (for R > 0). However, the last two integrals are irregular
due to the divergence of the function Yy(z~R) at the point E = ¢, . Accordingly, the
first integral, [1(412‘, may be taken within the stationary phase approximation. This
procedure leads in the lowest order to the result

g 2

A= 3T sin(2k#R) (4.2.20)

where ki is the Fermi wave vector of the low energy band evaluated at the energy
E =1t,. We continue with IX)AU where we replace the Bessel function of the first and

the second kind by its integral representation, Eqs. (B.1.3) and (B.2.2).

, 0o 0 0o E2?
If)A =(—1)"" / dt/ dt’/ dE ——— <sin [(2" cosht + 2z~ cosht')R]
e 0 0 ty (hvp)?

—sin [(z* cosht — 2~ cosh t’)RD

Using integration by parts it can be shown that the integral vanishes. Then we come
to the last two integrals, Eqs. (4.2.18) and (4.2.19), which are dominated by the
contribution of the divergence at the gap edge. Here we linearize both variables 2™
and 2~ around the point £ = ¢, which yields 2~ = v/#,0/(hvr) and 27 = /2t /(hvr)
with § = E —t,. After the substitution # = 2~ R we can bring the integral I® to the
form

— Oodx xJo(x)Yo () (4.2.21)

This integral can be taken with help of Eq. (B.5.5) and yields (evaluated at the upper
and lower bound of integration) the result Iﬁa = (. Finally, there remains the integral

48



CHAPTER 4. THE RKKY INTERACTION IN BILAYER GRAPHENE

I® which may be, after a linearization of z* and z~, written as

4 oo
Iy, = ok R) / dx Yy(x) (4.2.22)
0
The latter integral is known in literature: [~ dz 2Yy(x) = 2/ All in all we find that
the exchange integral at the gap edge has the following asymptotic form

2t )
JAzAl/ :CfAzAl/ {37(—;2 SIH(Qk#R)

p 8ty 2
(=) i / @ cos(kpR — 7T/4)] . (4.2.23)

Interestingly, Eq. (4.2.23) consists of two parts: the first part is the usual 1/R?*-term
which is obtained from a stationary phase approximation. This term oscillates with
the wave vector 2k}, and is layer symmetric. The second term of Eq. (4.2.23) comes
from the irregular part of the exchange integral and has completely different features:
it oscillates with the wave vector k., decays as 1/R%? and is layer anti symmetric.
Although the second term may seem negligible from the mathematical point of view,
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Figure 4.6: The RKKY interaction in AB-stacked bilayer graphene at a Fermi energy
of 0.4eV . Plotted is the exact exchange integral for two moments on sublattice A and
two different types of asymptotic forms versus the impurity separation. The exchange
integral is always taken in armchair direction and expressed in terms of the coupling
constant C'. While the O(R?) asymptotic form is in pronounced disagreement with the

exact exchange integral the O(R3/?) asymptotic form agrees very well, in particular
for large impurity separations.

it is necessary in order to describe the RKKY interaction in the physically relevant
range. This can be seen in Fig. (4.6) where the exact exchange integral obtained
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from numerical integration is compared to the O(R?) and O(R"/?) asymptotic form.
While the O(R?) asymptotics reveals a rather poor agreement, it can be seen that the
O(R®/?) asymptotics agrees very well with the numerical result.

In the Two Band Region

Another feature which makes the AB bilayer interesting with respect to the RKKY
interaction is the existence of a two band region. When the Fermi energy lies in
the two band region the arguments of both Hankel functions, 2z and z~, are real
valued and greater than zero. Under these circumstances it is convenient to replace

A-A A-B B-B

e
E

0.0003 _
E.=045eV £=045¢eV -

- i : —— Jexact intralyer |
g -0.0003 _: — — Jasympintrlayer |_}_ ] |
= ’ ! J exact interlayer | | |
o I_',h— ----- J asymp interlayer [ t——t— T —+—T—1
T 0.0003}! i
O ) i
g |
O !
(b i(d i (f
-0.0003 _L ( ) E.=0.50 eV__i_J( ) E-=0.50 eV il ( ) E-=050eV _

.I | 1 | 1 | 1 | 1 | 1 | 1 N 1 | 1
40 80 120 40 80 120 40 80 120
Impurity separation (a)

Figure 4.7: The RKKY interaction in AB-stacked bilayer graphene plotted in arm-
chair direction as a function of the impurity separation. The Fermi energy is increased
from 0.45eV in the first row to 0.5eV in the second row. Each column represents an-
other impurity configuration: the first column represents the case where two moments
reside on sublattice A, the second column the case where the two moments reside on
different sublattice and the last column the case where the two moments reside on
sublattice B.

both Hankel functions by their asymptotic forms for large arguments and to treat the
exchange integrals within a stationary phase approximation. In this way the exchange
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Layer
/
Er |ogop Iala;, (1) symietry
_ -1 32h*vE
Ep=0 | AAp (1" AS
B,By (-pr-t 2 AS
B Ay (—nf iy AS
0< Ep <ty| AAp 2 2EELLL o (Ep)na(Er) sin (2kfR) S
BBy 2 2EELLL pnp(Ep)np(Ep) sin (2k5R) S
BjAp —2 2BeLll iy (Ep)np(Ep) sin (2k5R) S
Ep=t | AlAv oLy sin(2kE R) + (=1)i=" 75’;;/2 A/ # cos(kpR — 7 /4) mixed
BBy oLy sin (2k%R) S
BAy — oL sin (2k5R) S
2
Ep >t iEZ [ sin(2kfR) + —sin(2kp R)
A Ay " 2Er +t 2E mixed
+4(~1)'" L sin(k: + k*)R}
o [(fgﬁ;) sin(2kfR) + (EF t*) sin(2k, R) .
B; By e p mixed
+4(—1)" % sin(kf + k;)R}
— 2B [gEEFj;) sin(2kER)  + L=t in(2k5 R) .
B Ay N e mixed
A1) VIR ik + k;)R}
4 (BEp— 4/ (E
Def: f: (ZEF-f—tl) EEi-l‘iig +(2EF —tl) EEit:ig
Ep>>t1 | ooy (—1)!=I(—1)1 e 4EE gin (2 Be R) AS
X cos? (Q%FR + 5[ - l})

Table 4.4: The asymptotic form of the RKKY interaction in AB-stacked bilayer
graphene. The exchange integral separates in each of the six distinct cases into the
product Joa, (R) = Clyar, (R) faar, (R) and this table defines the asymptotic form
of the intervalley scattering function In,,(R). The intervalley scattering function
faar, (R) may be taken from Table (4.3). In the expressions above | refers to a layer
index, o to a sublattice index and ki = \/Ep(Er £1,)/(hvr) to the Fermi wave
vector of the AB bilayer. In addition to that we have introduced here the functions
for the site projected density at the Fermi level. The last column gives the layer
symmetry of the asymptotic form; ’S’ stands for layer symmetric and ’AS’ for layer
antisymmetric.
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integral can be brought for each of the six distinct impurity configurations to the form

20
Ty R) = = [W;a, sin 265 R + W2, sin 2k R
e
+ (=)W sin(kE + k;)R] , (4.2.24)

with the three functions W ,, W, and W defined in Table (4.4). These functions
weight the contribution of the three different scattering processes that occur at the
Fermi surface: (i) scattering with the Fermi wave vector of the low energy band k.
which is weighted by the function W, (ii) scattering with the Fermi wave vector of
the high energy band kj which is weighted by the function W__, and (iii) scattering
with k% + kr which is weighted by W:a_,. Interestingly, all three weight functions
are layer symmetric and it is solely the prefactor (—1)"~ that makes the interband
scattering term in the second line of Eq. (4.2.29) layer antisymmetric. The ratios

X 4 : : T ;
= (a) | | A sublattice
0 —————— X 1
- e
z 2L |- W(+')/W(+) | A/B sublattice

‘\

Interaction J(Cx1 04) w W

0 =
Je1B1
— Jaimi
2r | ‘ x | | _‘ UNINI
0.2 0.3 0.4 0.5 0.6

Fermi Energy (eV)

Figure 4.8: The relative weight functions of the three Fermi surface spanning vectors
ki, kn and kj + k. and the exchange integrals Ja,a,, Ja,p, and Jg,p, plotted as
a function of the Fermi energy. As may be seen from Fig. (4.8a) the transition
from the bonding-antibonding band gap to the two band region is accompanied by a
sharp change of the relative weight function Wi, /W, and a discontinuous change of
Wia/Wi,. This unusual behavior at the gap edge is responsible for the discontinuity
in the derivative of J, 4, that can be seen in in Fig. (4.8b). The weight functions are
taken from Table (4.4). The exchange integrals presented in Fig. (4.8b) are obtained
from numerical integration of Table (4.2) and expressed in terms of the coupling
constant C'.

of the weight functions W__,/W2* , and W'~ /W_ , are plotted in Fig. (4.8a) for two

aao’
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moments on sublattice A, two moments on sublattice B and two moments on opposite
sublattice. It can be clearly seen that the relative weight functions grow in the latter
two cases as a continuous function of the Fermi energy. That behavior manifests
in an RKKY interaction that is in the bonding-antibonding band gap governed by
oscillations with the period of the low energy band &} and in the two band region by
oscillations with the period of all three Fermi surface spanning vectors. The transition
between the two regions is smooth and this is the reason why no abrupt change can be
observed in Fig. (4.8b) where the exchange integrals are plotted as a function of the
Fermi energy. However, for two moments on sublattice A there is at the gap edge a
sudden, and in case of W, /W, even a discontinuous increase of the relative weight
function from zero to a finite value of about three. From the relevant expression in
Table (4.4) it may be seen that the weight function W}, is continuous in energy and
for this reason the discontinuity must arise from W, ,. But it is necessary to stress
that the discontinuity in the weight function W), does not mean that the RKKY
interaction itself is discontinuous. Since the function sin (Zk}?R) goes to zero at the
gap edge we find solely a discontinuity in the derivative of the RKKY interaction.

In order to figure out how accurate Eq. (4.2.29) describes the RKKY interaction we
plot in Fig. (4.7) the asymptotic form and the exact exchange integral as a function
of the impurity separation for the six distinct impurity configurations. Exemplarily
we choose two different Fermi energies in the two band region: 0.45eV and 0.5eV.
One immediately notes that the asymptotic form and the numerical calculation agree
very well already at a Fermi energy of 0.45¢V. An increase of the Fermi energy to
0.5eV improves the agreement and leaves the form of the RKKY interaction between
spins on sublattice B almost unchanged but has a dramatic effect on the interaction
between two spins on sublattice A. The latter observation and also the unusual
behavior directly at the gap edge are a consequence of the divergence of the real space
propagator that we identified in the previous section.

For highly doped AB-stacked bilayer graphene the expressions of Table (4.4) can be
expanded around Er/t; >> 1. In the leading order of this expansion we find an
exchange integral that oscillates with the period Er and has a beat structure which
arises from the modulation with the interlayer hopping constant ¢, :

AEp

_ -1 1-6,,
Jaza’l/(R) - <_1) (_1) 7TR2 fala’l/<R)
X sin 2&3 cos” fL R+Z (=1 (4.2.25)
hvp 2hvg 2 o

This equation is valid for all six distinct impurity configurations. From a comparison
to the exact exchange integral we find that the asymptotic form holds for Fermi
energies greater than leV. Yet, such a high doping is probably unrealistic.

The RKKY Interaction at Finite Temperature

At zero temperature we uncovered an unusual RKKY interaction which is, at zero
doping, extraordinarily sensitive to the impurity position and has at the edge of
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the band gap a remarkable 1/R%? term in its asymptotic form. Now we want to
figure out whether the unusual behaviour persists for higher temperature. We use the
finite temperature Green’s function (given in in Appendix C.2) and insert it into the
finite temperature exchange integral, Eq. (2.1.29). This procedure yields the following
separable form

oy (R) = CLoyey, (R) foor, (R) (4.2.26)

with C' = —\*h%a®/(64nt®). The fast oscillation function fy,q, (R) turns out to be
temperature independent and for this reason we use the same definition and also the
same connection to the six distinct impurity configurations than above. The temper-

(R)

OélOé;/ Z:O‘l@l/
> (h“’h"v;l“)z Ko (+*R) + Ko (=~ R)]?
> (h“n“v?“)Q Ko (=" R) — Ko (=~ R)J’

4
3
4
™3
Bm A3
)

A1 Ay

Ax Ay

hop > (242K, (+* R) + 272K, (z‘R)]Q

Awyn, —1ip

(=
By (o) (#4270 (=5 B) — =2 Ka (= R))’

4
B o — i

BiA; [2TK; (2TR) + 27 K, (ZfR)]z

4
3

By Ay

-4 KL (2TR) - 2T Ky (=~ R))?

Table 4.5: The six distinct intravalley scattering functions Zo,q, (R) for AB-stacked
bilayer graphene at finite temperature. Each Iaza,,(R) is the Imear combination of
two modified Bessel functions K,(z*R) of the second kind and vth order with z* =
[(hw, — ipt) (Aw, — ip F it1)]"* /(hvr) and the impurity separation R. By definition
the real part of the square root is positive valued.

ature dependence enters through the intravalley scattering function Iazag, (R) which
is (for each impurity configuration) presented in Table (4.5). The Matsubara sum, in
exchange integrals, has a very small convergence radius since all items of the infinite
series decay rapidly as the frequency increases. This makes the finite temperature
formalism much more efficient compared to the zero temperature formalism where
the exchange integrals are highly oscillatory and must be integrated over a wide range
until they converge. But unfortunately, it is very hard to treat the finite temper-
ature exchange integrals analytically. Even in the case of an asymptotic expansion
for large impurity separations the attempt to take the Matsubara sums analytically
fails due to the square root function of the two variables z* and z~. For this reason
we proceed with a numerical evaluation of the exchange integrals. In order to make
the situation as realistic as possible we focus on the RKKY interaction between two
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intercalated impurities, that means impurities which reside on high symmetry points
midway between the two layers and couple to a local environment that consists of a
set of surrounding lattice sites.

The RKKY Interaction between Intercalated Impurities

The covalent radius of a typical magnetic atom is much greater than that of carbon
and for this reason we expect that a realistic impurity couples to a set of surrounding
lattice sites and resides at a high symmetry position. The most open position in

Figure 4.9: Two intercalated impurities in AB-stacked bilayer graphene. FEach
impurity spin (red) is assumed to couple to an environment of ten carbon atoms
which are highlighted in green.

the AB-stacked bilayer graphene is where the impurity sits midway between the two
layers, below the center of a hexagonal plaquette in the top layer and above a B-site
carbon atom in the bottom layer. This configuration is shown in Fig. (4.9). As a
model, we assume that each impurity couples to the gas of delocalized electrons via
ten surrounding sites which are in Fig. (4.9) highlighted in green. Furthermore we
assume that the coupling constant depends only on the distance to the respective
lattice site. Under these circumstances the Hamiltonian for the electron-impurity
coupling reads

Hl = —)\1 Z Sl-sa1 — )\QSl.SBQ — /\1 Z SQ.Sa2 — )\QSQ.SBQ/ (4227)

al az

where S; stands for impurity spin and s, is the operator for electron spin density.
Each sum is taken over nine sites of carbon atoms, i.e. the six carbon atoms in the top
layer and the three A-site carbon atoms in the bottom layer. These nine sites have
the same distance to the impurity and for this reason enter with the same coupling
constant \;. The coupling to the B-site, directly below the impurity, is stronger since
the distance is shorter and therefore we use here another coupling constant which
is denoted as As. In the incoherent coupling scheme the interaction energy between
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Figure 4.10: The relative weight functions W~ /W and W+~ /W™ and the period
of the RKKY interaction plotted as a function of the Fermi energy. The figure shows
the interaction between intercalated impurities separated in armchair direction. At
the gap edge the relative weight function W~ /W™ switches discontinuously from
zero to a value of about ten while the relative weight function W+~ /W™ increases
continuously on a lower level. This behavior indicates that the RKKY interaction
oscillates in the band gap with the period 7/ky and in the two band region with the
period 7 /k}.. The weight functions W+, W~ and W+~ are taken from Egs. (4.2.30)
- (4.2.32). The period of the exact interaction is obtained from numerical evaluation
at some discrete points and in Fig. (4.9b) compared to the period of the low and the
high energy band.

the two impurities can be obtained from the sum over all 10 x 10 = 100 site-to-site
interactions. Each individual exchange integral is according to Eq. (4.2.26) given by a
product of an intravalley scattering function Z,, (R) and a fast oscillation function
fayer, (R) that oscillates on the scale of the lattice constant. Since the former function
changes very slowly on the scale of the lattice constant it is convenient to adopt the
approximation Zy,q/, (|R + v|) & Zg,qr,(R). Under these circumstances the sum can
be taken analytically and yields the following result

Funcn(R) = 9C |21, (B) 4 s ()
 Tpp(R) + 2Ty (R) + 25,0, (R)
e (ﬁ) T (R) + T (R) + Ty, (R)]
i c(—)zzB@(R)fAlAl(R) (4.2.28)

It should be noted that the R dependence of the fast oscillation functions has been
treated exactly. Due to the particular position of the impurity almost all fast os-
cillation functions sum up to a constant value and there remains only the function
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fa, 4, (R) in the last line of Eq. (4.2.28).

At zero temperature, the asymptotic form can be obtained from a substitution of
Table (4.4) into Eq. (4.2.28). For small Fermi energies the procedure yields a Fermi
energy dependent prefactor that comes in product with a term that oscillates with
the wave vector k. and decays as 1/R?. This asymptotic form holds even at the gap
edge since the unusual, layer anti-symmetric 1/R%? contributions from the asymp-
totic form of T, 4,(R) and Zy,4,(R) cancel each other. When the Fermi energy is
further increased and lies finally in the two band region the exchange integral can be
brought to the form

2
Jtereal(R) = W; W sin 2kE R+ W sin 2k R
+ (=)' W sin(kf + k;)R} , (4.2.29)

with the weight prefactors W', W~ and W'~ defined as follows:

W= 2EF+u<9 W= t) _6@?)@%_@

+ fan (R (f) EF+tL)) (4.2.30)
we - QEF_M(9<EF+M —6(§I)<E%—ti)

b fa(®) ()\—> (Br - 1.?) (1231)
W = (o - -6 (32) (B2 - )

+ faa(R) (i—f)g(E%—tD) (4.2.32)

These expressions are plotted in form of the relative weight functions W~ /W and
W+~ /W in Fig. (4.10) as a function of the Fermi energy. It can be clearly seen
that both relative weight functions are zero in the band gap. At the edge of the
band gap W~ jumps suddenly to a finite value which is about ten times greater than
W+ while the function W'~ increases as a continuous function of the energy and is
much smaller than W™. From these findings we conclude that the RKKY interaction
oscillates in the bonding-antibonding band gap with the period of the low energy
band and switches at the edge of the band gap suddenly to the period of the high
energy band. The discontinuous change of the period of the RKKY interaction at
the gap edge can be seen in Fig. (4.10b) where one finds the numerically calculated
period of the exact interaction compared to the period of the low and the high energy
band. The numerical values agree very well with the asymptotic form and reflect
in particular at the gap edge the expected behavior: the period limits to the value
A = mhop/(v/2t,) ~ 15a as the gap edge is approached from smaller Fermi energies
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Figure 4.11: The RKKY interaction between two intercalated impurities plotted
as a function of the impurity separation for different chemical potentials. Shown
is the exchange integral expressed in terms of the coupling constant C' in armchair
direction. At the gap edge the RKKY interaction changes its form as a function of

the temperature. Away from the gap edge the form is conserved while the amplitude
is damped exponentially.

and diverges due to the vanishing Fermi wave vector of the high energy band as the
gap edge is approached from higher Fermi energies. When the Fermi energy is further
raised into the two band region we observe a broadening of the distribution of the
oscillation period which can be attributed to the increasing importance of the relative
weight functions W*~. Besides the oscillations with the period k. the RKKY inter-
action shows now oscillations with the period &k} and kf + k5.

In Fig. (4.11) the RKKY exchange integral is plotted as a function of the impu-
rity separation for different temperatures. At zero temperature the RKKY interac-
tion shows at the gap edge, when the chemical potential is increased from 0.4eV
to 0.41eV, the discontinuous change of the period that we uncovered above, and in
addition to that, at low impurity separation, a transition from oscillatory to antifer-
romagnetic behaviour. Such a transition can be also observed when the chemical
potential is held fixed at 0.4eV and the temperature is increased to 50K or 100K.
The temperature-dependent transition arises from the smearing of the Fermi surface,
which allows all states in a certain temperature-dependent window around the chemi-
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Figure 4.12: The two quantities ) ., J(R) and )5 p |J(R)| plotted as a func-
tion of temperature for different chemical potentials. In the lower panel it may be seen
that the blue curve undergoes a transition from a small negative value to a pronounced
negative value which means that the RKKY interaction evolves from oscillatory to
antiferromagnetic. This transition is accompanied by an overall increase in strength
that should be noticed in the upper panel where the quantity ) p. p |J(R)| is pre-
sented. When the chemical potential is placed further away from the gap edge the
transition occurs at higher temperature, before, far away from the gap edge there is
no transition anymore.

cal potential to contribute to the RKKY interaction. In particular, when the chemical
potential lies near the gap edge, the RKKY interaction becomes the superposition of
the short-wavelength oscillations with small amplitude from below the gap edge and
the long-wavelength oscillations with large amplitude from above the gap edge. This
leads to an RKKY interaction that changes its form with temperature and is sig-
nificantly enhanced in magnitude. But it should be stressed that such a transition
can be observed only at low impurity separation and when the chemical potential
lies in a certain window around the gap edge. Away from the gap edge and at high
temperature the usual behavior of a metal is recovered: the form of the interaction
is conserved while the amplitude is exponentially damped as a function of 7" and R.
These observations can be also made in Fig. (4.13) where we plot the exchange inte-
gral as a function of the impurity separation and the chemical potential for different
temperature. At zero temperature and low impurity separation there are two distinct
regions with oscillatory RKKY interaction below the gap edge and antiferromagnetic
interaction above the gap edge. The transition between the two regions is associated
with a discontinuous change of the RKKY period and with an increase in magnitude.
When the temperature is raised, at fixed impurity separation and fixed chemical po-
tential, the discontinuity disappears.
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Figure 4.13: The RKKY interaction between two intercalated impurities plotted as
a function of the impurity separation and the chemical potential. The temperature is
increased from 10K in the first row to 300K in the last row. The right-hand column
shows the RKKY interaction multiplied by the factor R*/u in the color scheme that
is presented in the upper right corner. The left-hand column displays the sign of the
interaction; black is taken for ferromagnetic coupling and red for antiferromagnetic
coupling. At a temperature of 10K there are two distinct regions that are separated by
a discontinuity at the gap edge. When the temperature is increased the discontinuity
smoothes out.
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Figure 4.14: The RKKY interaction between two intercalated impurities in armchair
direction for three different coupling schemes: incoherent, nearest-neighbor coherent
and fully coherent. The picture shows the exchange integral expressed in terms of
the coupling constant C'. The temperature is set to 10K. While the incoherent and
the nearest-neighbor coherent coupling scheme have at the gap edge a discontinuity
in their period the fully coherent coupling scheme does not show such distinctive
behaviour.

In order to figure out at which point, that means at which temperature and at which
chemical potential, the crossover from oscillatory to antiferromagnetic occurs we plot
in Fig. (4.12) the quantities ), ., J(R) and ) . . |J(R)]. At a chemical poten-
tial of 0.39eV" the quantity » ., J(R) stays only in a very small temperature range
close to zero and after that increases rapidly. That means that the crossover from
oscillatory to antiferromagnetic occurs at that chemical potential already at very low
temperature. From the corresponding plot of the quantity » . . [J(R)| it can be
seen that the crossover is associated with an increase of the magnitude of the inter-
action. When the chemical potential is placed further away from the band edge the
oscillatory RKKY interaction persists up to higher temperature and finally, far away
from the edge, the antiferromagnetic region cannot be accessed anymore.

Naturally there arises the question whether the unusual sharp change of the RKKY
period at the gap edge is a particularity of the incoherent coupling scheme. In order
to answer this question we consider the most general case where each impurity in-
duces apart from on-site spin-flip processes also inter-site spin-flip processes between
the ten carbon atoms in its environment. Each spin-flip process is weighted by an

61



4.3. BIASED AB-STACKED BILAYER GRAPHENE

individual coupling constant and accordingly there is a remarkably high number of
different coupling schemes. From an analysis of a wide range of coupling schemes
we find that the discontinuity is present in a large number of coupling schemes but
not in all. Exemplarily we present here three coupling schemes, the incoherent, the
nearest-neighbor coherent and the fully coherent coupling scheme, and plot the RKKY
exchange integrals as a function of the impurity separation. In Fig. (4.14) it can be
clearly seen that the discontinuity at the gap edge is present in the incoherent and
nearest-neighbor coherent coupling scheme but disappears in the fully coherent cou-
pling scheme. Above the gap edge the RKKY interaction takes in the fully coherent
coupling scheme a completely new form: the interaction is for low impurity separa-
tions oscillatory instead of antiferromagnetic. The sensitiveness to the local coupling
scheme comes from the particularity that the graphene spectrum has two valleys at
the two inequivalent K points. A choice of a particular coupling scheme requires a
detailed information about the orbital structure of the impurity and can be made only
on the grounds of an ab initio calculation.

Biased AB-stacked Bilayer Graphene

In the previous section we found that the form and the strength of the RKKY in-
teraction in AB-stacked bilayer graphene can be controlled by three parameters: the
impurity separation, the Fermi energy and the temperature. Depending on experimen-
tal situation, these parameters may be hard to control or this may be impracticable
in technical applications. The external electric field applied normally to the layers

e ©_ 0
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Figure 4.15: Illustration of biased AB-stacked bilayer graphene. The electric field
opens around the K point a band gap and distorts the low energy band structure to
a form which resembles that of a Mexican hat. The height of the band gap E, and
the width of the Mexican hat Ak are defined according to Eq. (4.3.3).

may provide a more convenient way to tune the RKKY coupling. In the literature it
is well known that such electric field converts the low energy band structure into a
Mexican-hat-type configuration and opens a band gap at the K point. This behaviour
gives rise to the hope that the application of an electric field provides a practicable
and powerful way to control the coupling of impurity spins. On these grounds we

62



CHAPTER 4. THE RKKY INTERACTION IN BILAYER GRAPHENE

want to discuss in this section the RKKY interaction in biased AB-stacked bilayer
graphene. In our model the interaction is mediated by the low energy excitations of
the biased bilayer which are, in the basis of the four Bloch states | U ), | U ), | U )
and | U% ), described by the following Hamiltonian [93, 94]

or (k) ¥ 0 0
H X =™ 2 - 4.3.1

where V' stands for the electrostatic potential between the two layers, ¢, for the
interlayer hopping constant of the AB bilayer and ®,,(k) is defined according to
Eq. (3.1.4). The corresponding band structure is given by

1/2

B V? t2
oo (k) = 0 | R202K? + ?L + ot a’\/zL + R2vZk2 (2 +V?2) (4.3.2)

with 0,0’ € {£}. This expression is plotted in Fig. (4.15b) and one immediately
notes that there are four distinct regions: the band gap around the K point, the
Mexican hat region, the gap between the low and the high energy band and the two
band region. Of particular importance for is the fact that the band structure and in
particular the two characteristic parameters, the height of the band gap £, and the
width of the Mexican hat Ak, can be controlled by the electric field:

Vt, Vo V2 4212
F,=— Ak = L 4.3.3
g V2 + 2 2hop \| V242 ( )

These low energy excitations lead to a DOS which takes in the low energy regime the
following form

Paoy (E)

Dal(E) = DO Sgn(E) U(E)

(4.3.4)

with p,,(E) defined in Table (4.6), Dy = 7/(2h*v2Q57) and u(E) given by

u(FE) = sgn (E + Vit /(24 V2 + ti)) \/E2 (V24142) — %ti (4.3.5)

The DOS is obtained in an analytical calculation from the imaginary part of the zero
temperature Green’s function. The Green’s function is given in Appendix C.3 and it
can be clearly seen that each matrix element is a linear combination of two Hankel
functions. Depending on the energy these Hankel functions enter into the formula
D,,(E) = —1/nlimg_,0 S [Ga0, (R, E)] as purely real, purely imaginary or complex
and this leads after taking the imaginary part to the results that are presented in
Table (C.3). A detailed derivation of the DOS is shown in Appendix C.4. From a
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Vi Vit %4 |4 \ %
|E|<2\/V;+t2L 2\/V2:»tf_ <|E| <% 5 <I|E|<\/F+t8 ||[E|>\/F+1t7

pa, (E) 0 —9|E|V (2E - V) 2E — V) (w(E) — |E|V) |2u(E) (2E — V)

—2sgn(E)[2E-V)EV| 2E-V)(u(E)— |E|V)
(B 0 2 2 2u(E) (22 - V)
—(2E+V) tJ_] +tisgn(E) (2E+ V)

pa, (E) 0 2E|V (2E + V) 2E + V) (uw(E) + |E[V) |2u(E) (2E + V)

2sgn(E) [(2E+V)EV | 2E+ V) (u(E)+|E|V)
0B, (E) 0 2u(E) (2E + V)
+(2E - V)t3] +t3 sgn(E) (2E — V)

p(E) 0 8|1E| (V2+17) 4F (2u+sgn(E)(V> +t1))|  16u(E)E

Table 4.6: The DOS of biased AB-stacked bilayer graphene. The DOS takes the
form D,,(E) = Dy sgn(E) pa,(E)/u(E) and the first four rows of this table define the
function p,,(E) with a € {A, B}, | € {1,2} and u(F) taken from Eq. (4.3.5). The
sum over all four sites yields the function p(E) which is presented in the last row.

comparison of the different sublattices it may be seen that the DOS is different on site
A and B in each layer. This may be equally found in the unbiased bilayer and can be
attributed to the particular stacking of the two layers. A particular effect of the bias
voltage is the broken layer inversion symmetry, which can be seen from a comparison
of site Ay and Ay (or alternatively By and Bs).

The RKKY Interaction at Finite Temperature

We now turn to the RKKY interaction in biased AB-stacked bilayer graphene. As
a model we consider a system with two magnetic impurities that couple each via a
single site to the gas of delocalized electrons. There are four distinct sites of localized
charge and accordingly ten distinct impurity configurations to discuss. With help of
the Green’s function that is shown in Appendix C.4 we find the ten distinct exchange
integrals given by the following separable form

Josary(R) = CLoer (R) fayar, (R) (4.3.6)

with the intervalley scattering function fq,«, (R) taken from Table (4.3) and the
intravalley scattering function defined in Table (4.7). Instead of discussing the effect
of the electric field on the ten distinct site-to-site interactions we proceed immediately
with the RKKY interaction between intercalated impurities. Here we use the finite
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ozlozi, Iozloz;, (R)

ML s B [AGV)HY(HR) + AV HE (=~ R))
Arfz | s PO [AV)HS (T R) + A-V)HY (-~ B)]?
BiBy | sy, S [Fr(VHY(HR) + F- (V)H (=~ R))?
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5> [AV)zTHI(zF R) + A(-V)z~ Hi(z"R)]?
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Definitions

2t = L\/(if‘wn—ﬁ—u)Q-ﬁ—VTQ-l-M

hvp

2T = #\/(iﬁwn—i-u)z-l-vfz —-Uu

hvp

U=/ (ihwon + )2 (V2 +12) — 28

AV) =U + [thwn + p] V

B(V) = 2ihwn + 2+ V

Fo(V) =U — s[ifiwn + ] V

+ 2ihw, +2pu+V 12
2ihw,+2u—V 'L

Table 4.7: The ten distinct intravalley scattering functions IOW;/ (R) of biased AB-

stacked bilayer graphene.

The interaction is always expressed in terms of the six

functions that are defined on the right hand side of this table; V stands for the
interlayer bias, p for the chemical potential and w,, = 7(2n+1)/(h8) for the Matsubara
frequency.

temperature formalism since it provides a much more efficient and powerful way for
the numerical implementation. For completeness the ten distinct zero temperature
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site-to-site exchange integrals are presented in Appendix C.5.

The RKKY Interaction between Intercalated Impurities

The most open position for the intercalation of the AB bilayer is, as described in
Section 4.2.3, the position midway in-between the two layers, on top of a B-site
carbon atom in the bottom layer and below the hexagon of carbon atoms of the top
layer. In a model where each impurity couples via ten nearest carbon atoms to the
Dirac-Weyl electron gas there are ten on-site spin-flip processes, four nearest-neighbor
spin-flip processes in the top layer, three nearest-neighbor spin-flip processes in the
bottom layer and two distinct inter-site spin-flip processes between the two layers.
Accordingly there is a remarkably high number of coupling schemes. However, as
we have seen above, a wide range of coupling schemes reproduce the basic features
of the simplest one, the incoherent coupling scheme. For this reason we restrict
the following discussion to this coupling scheme and assume that there are only two
different coupling constants that depend solely on the distance to the respective carbon
atom: the coupling to the hexagon of carbon atoms in the top layer and the coupling
to the three A-site carbon atoms in the bottom layer is described by the constant A,
while the coupling to the B-site carbon atom in the bottom layer is described by \s.
In this coupling scheme the exchange integral of the intercalated impurity follows from
the linear combination of the 10 x 10 site-to-site interactions. The linear combination is
taken in a numerical calculation using the analytical results from Table (4.7). When
we discuss the RKKY interaction as a function of the interlayer bias we have to
remember that the interlayer bias has impact on the number of the low energy states.
Depending on whether or not the system has the possibility to exchange electrons
with its surroundings, either the chemical potential or the particle number is fixed
when the interlayer bias is applied.

The RKKY interaction with a fixed chemical Potential

First we consider the RKKY interaction in a system with a fixed chemical potential.
This situation is, for example, found in epitaxial AB-stacked bilayer graphene grown
on SiC where the dangling bonds of the substrate donate conduction electrons and
ensure in this way that the chemical potential is pinned. The chemical potential is
set, in our model, to a value of 0.1eV. The fixed chemical potential requires that the
number of states becomes a function of the interlayer bias. From integration of the
DOS which is defined in the last row of Table (4.6) we obtain, at zero temperature,
the following expression for the number of electrons in the conduction band

Ne(Er) = 4Dosgn(Er)¢(EF) (4.3.7)

with Dy = m/(2h?v%Qp7) and the function £(Er) defined in Table (4.8). It should be
noted that this formula can be also used for other systems with Fr < 0 where it gives
the number of states in the valence band. The above expression clearly shows that
the interlayer bias provides a way to tune the number of electrons in the conduction
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Vit Vit ViV V2 2 V2 2
|EF‘<2\/V2:-ti 2\/‘/;:”3- §|EF|§§ §<|EF|< T"i‘tj_ |EF|2 T+tJ_

§(Er) 0 2fu(Er)| B+ +uEp) | 2(BR+Y)

Table 4.8: The function §(Er) which determines according to Eq. (4.3.7) the particle
number in the low energy bands of AB-stacked bilayer graphene for a given Fermi

energy Er and a given interlayer bias V. The function u(E) must be taken from
Eq. (4.3.5).

(valence) band so that the chemical potential crosses a certain band structure region
and in the following we use this effect to control the RKKY interaction.

In order to get an overview of the RKKY interaction we plot in Fig. (4.16) the
exchange integral as a function of the impurity separation and the interlayer bias at
a chemical potential of 0.1eV and a temperature of 10K . The density plot on the left
shows solely the sign of interaction while the density plot on the right displays the full
magnitude of the interaction, multiplied by the factor R?/Er. One immediately notes
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Figure 4.16: The RKKY interaction in biased AB-stacked bilayer graphene at a
fixed chemical potential of 0.1eV. The temperature is set to 10K. The density plot
on the left shows the sign of the interaction plotted as a function of the impurity
separation and the interlayer bias voltage; black stands for ferromagnetic and red
for antiferromagnetic coupling. The density plot on the right shows the full strength
of the interaction represented in the color scheme which is shown on the right. For

presentational reason the exchange integral is in Fig. (4.16b) multiplied by a factor
of R2 / E F-

that there are three distinct regions where the RKKY interaction differs qualitatively.
The existence of these three regions can be understood from the different position
of the chemical potential within the band structure: for a small bias the chemical
potential lies in the gap between the low and the high energy band and the RKKY
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interaction oscillates with the period of the Fermi wave vector between ferro- and
antiferromagnetic coupling. When the bias is increased so that the chemical potential
crosses the Mexican hat region we find an RKKY interaction that oscillates with the
different k-vectors that span the Fermi surface. The relative weight of these oscilla-
tions as well as the oscillation period can be controlled by the electric field. Here we
can achieve for a special interlayer bias the situation that the interaction is antiferro-
magnetic over the whole range from 10a < R < 100a. Apart from that it is important
to note that the magnitude of the interaction is significantly enhanced in the whole
Mexican hat region. The latter effect is comparable to the increase in strength that
we found in the unbiased bilayer at the edge of the bonding-antibonding band gap
and can be seen in Fig. (4.13). The increase in strength follows from a divergence

0.005 0.3
S —V=0.10eV| |
S —V=0226V 0.2
S 0.0025F — V=0.27 eV] -
8 S0l
z A
s g -01f :
& -0.0025+ 7 & — VvV =0.leV
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o (a) —V =027eV
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Impurity separation (a) hvpky(eV)

Figure 4.17: The RKKY interaction plotted in armchair direction [Fig. (4.17a)] and
the band structure [Fig. 4.17b)] for different interlayer bias voltages. The chemical
potential is always held fixed at 0.1eV and the temperature is set to 10K.

of the real space propagator at zero temperature and is partly washed out at higher
temperatures. For the bias greater than 0.26el/ we access the third region where the
chemical potential is in the band gap. For such a high bias the RKKY interaction is
always ferromagnetic and decays rapidly as a function of impurity separation.

A more detailed understanding of the RKKY interaction in biased bilayer graphene
may be obtained from Fig. (4.17) where the exchange integral is plotted as a function
of the impurity separation for different bias voltage. The chemical potential is set to
0.1eV and the temperature to 10K . One immediately notes that the interaction is sig-
nificantly enhanced in the case V = 0.2eV and decays exponentially for V' = 0.25eV".
From comparison of the three curves in the range 10a < R < 30a it gets particu-
larly evident that the interaction changes its form dramatically with interlayer bias,
in particular when (as it is the case here) the chemical potential falls in a different
band structure region. The sensitivity to the position of the chemical potential gives
rise to the question whether the transition from ferro- to antiferromagnetic interac-
tion can be also observed as a function of temperature. To answer this question we
plot in Fig. (4.18) the RKKY interaction for a Fermi energy of 0.1eV and different
temperature. For the interlayer bias voltage we choose 0.26eV, a value which places
the chemical potential into the band gap but close to the band edge. Indeed, we find
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Figure 4.18: The RKKY interaction plotted as a function of the impurity separation
for different temperature at a chemical potential of 0.1eV and an interlayer bias of
0.26eV. The picture shows the interaction in armchair direction expressed in terms
of the coupling constant C'.

that the interaction evolves in the gray shaded region from ferromagnetic to antifer-
romagnetic as the temperature is increased. Furthermore we find that - instead of the
usual temperature dependent damping - the RKKY interaction is massively enhanced
in the gray-shaded region. This unusual behaviour can be understood from the fact
that for a sufficiently large temperature also the states from the Mexican hat region
contribute to the interaction. These states dominate the RKKY interaction when the
chemical potential is close to the edge of the Mexican hat region.

The RKKY Interaction with a fixed Particle Number

Now we come to the RKKY interaction in biased AB-stacked bilayer graphene with a
fixed particle number, which can be realized in experiment for a graphene bilayer which
is deposited on an insulating, nonpolar substrate. In such a system we can directly
control the position of the chemical potential by raising or lowering the interlayer bias
voltage. For a given particle number and a given interlayer bias the position of the
Fermi energy may be read off from Table (4.9). As an approximation, we use this
formula also to calculate the position of the Fermi level at low temperature.

The effect of the interlayer bias on the RKKY interaction may be seen in Fig. (4.19)
where the exchange integral is shown as a function of impurity separation at different
bias voltages. The temperature is fixed at 10K and the particle number is held at
its value for zero bias. The initial chemical potential at zero bias is 0.1eV. In the
range 10a < R < 30a we find for zero bias an oscillatory interaction that develops
into an antiferromagnetic interaction at finite bias. The strength of the interaction
increases with increasing interlayer bias. This behaviour can be understood as follows:
increasing the interlayer bias we shift the chemical potential into the Mexican hat
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Figure 4.19: The RKKY interaction in biased AB-stacked bilayer graphene at a fixed
particle number. Plotted is the exchange integral in armchair direction for different
values of the interlayer bias voltage. The particle density is fixed ton = 1.8 x10'% /em?
and the temperature is set to 10K. As may be seen from the inset, the interaction
starts to oscillate at higher impurity separations.

region where the interaction is, as may be seen in Fig. (4.19), significantly enhanced
and antiferromagnetic in the range from 10a to 30a.

0 < &(N,) < V2 V2 < E(N,) < V2422 E(N.) > V24262

E(N)2+V?2t2 2 3 t4 . 2
eVl [SOLEEE 22 el - G el (v 4 )| (/G -2

Table 4.9: The Fermi energy Er as a function of the particle number. In this
table we have introduced the function {(N.) = N./(4Dy) where N. is the number of
electrons in the conduction band.
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CHAPTER 5

The Bulk Band Structure of a IV-VI
Semiconductor

IV-VI semiconductors are compounds of a metal from the fourth group and a semimetal
from the sixth group of the periodic table. They crystallize, similar to sodium chlo-
ride, in a face-centered cubic (fcc) lattice with two atoms per unit cell. It has been
discovered, quite recently, that some IV-VI materials, e.g. SnTe, belong to the class
of topological insulators [63, 75, 95|, i.e. materials that feature topologically pro-
tected surface states. The existence of these topological surface states is bound to a
non-trivial topology of the bulk but unfortunately (due to a complicated crystal and
electronic structure) it is normally very difficult to trace how the surface state derives
from the bulk. In this respect, the IV-VI materials offer a unique opportunity for
such analysis due to their simple bulk band structure. We recapitulate in this chapter

Figure 5.1: lIllustration of the crystal structure of a IV-VI semiconductor. The
IV-VI semiconductor crystallizes in a face centered cubic (fcc) lattice with two atoms
per unit cell. The unit cell is highlighted in yellow.

a model that allows to derive the L point bulk band structure of the IV-VI semicon-
ductor from the microscopic degrees of freedom. Following Ref [73, 74, 84] we start
with a tight binding scheme for a simple cubic lattice which serves as a 'parent phase’
of the NaCl-type lattice. Later, we turn on the difference of the constituent atoms
via adding the different ionization energy of group IV and group VI elements. In this
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way we find near the Fermi surface two sixfold degenerate energy levels (including
spin degree of freedom) which derive from atomic p-states and split under the effect
of the crystal field and the spin-orbit interaction.

Tight Binding Approach for the Parent Phase

Before we come to the IV-VI semiconductor we consider a solid that crystallizes in
a simple cubic lattice with one atom per unit cell. We assume that each atom has
three valence electrons that occupy three p-orbitals and contribute to the interatomic
bonding. The electronic motion in the crystal is described by the Schrédinger equation
H°® = E® with the Hamiltonian H° = —h?/(2m)A+V (r) and the periodic potential
V(r). For the solution of the Schrédinger equation we make the tight binding ansatz

1 .
Oppe(r) = —= > *Fp,(r—R) (5.1.1)
\/N Re{sc lattice}

where R is a position vector of the simple cubic lattice sites, p,(r) the wave function
of the p-orbital in direction n € {z,y, 2z} and N the number of unit cells. This wave
function is an eigenfunction of H° on the condition that only the lowest coordination
sphere contributes and that the matrix elements between different values of n can be
neglected. The first assumption is justified since the wave function decays rapidly
with the distance R for remote sites. The second assumption is a good approximation
for all k-points on the initial Fermi surface which are non-degenerate in n. Under

(a)

y

Figure 5.2: The primitive cell of the parent phase in real [Fig. (5.2a)] and reciprocal
space [Fig. (5.2b)]. The parent phase crystallizes in a simple cubic lattice with one
atom per unit cell. The corresponding Brillouin zone can be seen on the left with the
Fermi surface drawn in its inside. The Fermi surface consists, under the assumption
of one dimensional orbitals, of six mutually perpendicular planes that intersect in the
six points k;, = 7/(2a)(1,1,1) (Adapted from [84]).
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SEMICONDUCTOR

these circumstances the spectrum is given by

En(k) = gn(k) + nn(k) (5'1'2)

with the lattice constant a and the functions &, and 7, defined as

o (k) = & cos (kza) + & [cos (kya) + cos (k.a)] (5.1.3)
nz(k) = 1 cos (kya) cos (k.a) + 12 cos (kya) [cos (kya) + cos (k.a)]

The other functions, i.e. §,(k), &.(k), n,(k) and 7, (k), can be obtained from Equation
5.1.3 and 5.1.4 by cyclic permutation of the indices. Due to the cubic symmetry there
remain no more than four material dependent parameters &y, &1, 171 and 75 to calculate
which can be brought to the form

= 2(p(0,0,0) | Ho | ps(a,0,0)) (5.1.5)
= 2(p.(0,0,0) | Ho | p.(0,a,0)) (5.1.6)
= 4(p,(0,0,0) | Hy | p(0,a,a)) (5.1.7)
= 4(p(0,0,0) | Ho | p(a,a,0)) (5.1.8)

If we treat the orbitals as if they were one dimensional, that means as if p, was only
finite along the z-axis and zero everywhere else, the spectrum reduces to the form:

E,(k) = & cos(kpa) (5.1.9)

Each band is half filled so that the hypothetical crystal is a metal. The Fermi surface

Nion | o & AAT | hAT W, Wi 7 | ot | | hwy
PbTe | 0.876 | 3.41 | —0.9 | 0.424 | 028 | —0.09 | 029 | 1.70 | 2.54 | 1.92 | 5.22
SnTe | 047 | 35 | —0.9 | 0.158 | 0.28 | —0.075 | 0.38 | 1.42 | 2,63 | 2.69 | 4.65

PbSe 1.243 3.65 —-0.9 | 0424 0.14 —0.315 0.65 1.16 2.95 3.78 3.54

SnSe 0.77 3.7 —-0.9 | 0.158 0.14 —-0.5 0.8 0.67 | 2.99 | 452 | 2.29

Table 5.1: Material parameters for several IV-VI semiconductors. The crystal field
parameter W*, the spin-orbit parameter A* and the matrix elements & and &, are
given in units of eV'. The two velocities hv| and hv, are given in eV A. The superscript
'—7 is taken for group IV atoms whereas the superscript '+’ is taken for group VI
atoms. It should be noted that SnSe crystallizes normally in a orthorhombic lattice.
The rock salt structure must be stabilized through alloying the SnSe crystal with lead
(Adapted from [74, 84]).
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consists, as illustrated in Fig. (5.2b), of six mutually perpendicular planes.

Formation of the Semiconductor: Dielectrization of
the Parent Phase

The model of the parent phase is extraordinary useful for understanding the electronic
structure of IV-VI semiconductors: the NaCl-type lattice can be obtained from a
simple cubic lattice by filling the (111) planes with group IV and group VI elements
alternately. This transformation yields in reciprocal space a body centered cubic (bec)
lattice with a Brillouin zone that is, as may be seen in Fig. (5.3), represented by a
truncated octahedron. Folding back the parent phase Fermi surface into the truncated
octahedron Brillouin zone clearly shows that a general point on the Fermi surface is
twofold degenerate. This degeneracy is lifted by the crystal potential (the one that
differentiates between group IV and group VI elements). As a result, the whole Fermi
surface of the parent phase gets covered by the band gap and the material transforms
into an insulator. However, there are points on the initial Fermi surface which feature
a higher degeneracy: these are the crossing lines and points in Fig. (5.2b). The highest
degeneracy occurs at the L points where all three planes intersect. As we shall see
below, these are the points where the band extrema of a IV-VI semiconductor occur.
First, we turn on the ionicity Vi,,(r) in the degenerate subspace which is spanned by
two states on the initial Fermi surface | ®,x_q /2> and | ®,x4q/2) Where q is a bee basis
vector. When we take only the first and the second coordination sphere into account
we obtain the following Hamiltonian

H, (k) = ( Ai(on) _En(k)) (5.2.1)

with Ajon, = (2(0,0,0) | Vien(r) | p2(0,0,0)) and E, (k) given by Eq. (5.1.9). From a
diagonalization of the Hamiltonian it can be seen that the ionization potential splits
the degenerate energy band FE, (k) into a separate valence and a separate conduction

band
€S (k) = T4/ En (k)2 + A2 (5.2.2)

The initial Fermi surface is now covered by a band gap of 2A;,, and hence the above
transformation turns the crystal into an insulator. The material dependent parameters
of the model & and A;,, can be determined by ab initio calculation or experiment
and are for a range of IV-VI semiconductors given in Table (5.1).

The Band Structure at the L Point

The maximum degeneracy on the initial Fermi surface occurs at the L points, the
points where the cube diagonals intersect with the hexagonal faces of the Brillouin
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zone. These eight L points can be connected pairwise by a bcc reciprocal lattice
vector so that there remain only four inequivalent ones. At all these L points, the

(b) — €

ETB /// 3W+ _|_
P

4
€

Figure 5.3: The Brillouin zone of a IV-VI semiconductor [Fig. (5.3a)] and the
splitting of the band structure at the L points [Fig. 5.3b)]. The Brillouin zone of the
fee lattice is represented by a truncated octahedron. The eight L points coincide with
the points where three planes of the initial Fermi surface intersect [see Fig. (5.2)] and
are characterized by a sixfold fold degeneracy of the band structure (without spin
degree of freedom). The degeneracy is removed, as illustrated in Fig. (5.3b), under
the effect of the ionization potential, the crystal field and the spin-orbit interaction
(Adapted from [84]). It should be noted that the two band edge states €] and e, are
in this picture inverted, a situation which is for example found in Sn'Te.

ionization potential Vi, (r) splits the sixfold degeneracy on the initial Fermi surface
into two threefold degenerate energy levels e = FA,,, which are separated by a gap
of 2A;.,. The corresponding eigenstates are given by

o (2 gy Jisn(R)

Re{sc lattice}

withk;, = 7/(2a)(1,1,1). There are two important points to highlight about Eq. (5.3.1):
(i) the wave functions, ®f(r) and ®_ (r), have opposite parities and (ii) each wave
function includes only one type of p-orbitals either from the atom of the fourth or of
the sixth group of the periodic table. The first point is apparent from the transforma-
tion r — —r. The superscript '+’ is taken for even and '—’ for odd parity. The second
point can be understood as follows: the simple cubic lattice is spanned by the position
vectors R = Z?Zl m;a; with m; € Z and the basis vectors a;. An evaluation of the dot
product in the argument of the sine or cosine of Eq. (5.3.1) yields k. R = 7/237 | m,

5
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and hence even multiples of 7/2 at group IV sites and odd multiples of 7/2 on group
VI sites. These considerations illustrate the effect of the ionization potential on the L
point band structure. However, in order to obtain a realistic spectrum it is necessary
to take into account the hybridization of the p-orbitals by the crystal field and the
spin-orbit interaction.These interactions remove the threefold degeneracies of even
and odd triplets completely and generate the narrow semiconductor band gap.

The Crystal Field

The crystal field operator is in a representation in the degenerate subspace | ®7), | ;)
and | ®F) given by WE = (®E | H® | &%) with m # n € {x,y,2}. The particular
form of the basis wave functions and the inversion symmetry of H° is the reason why
the crystal field operator separates into the direct product of two parts, W+ and W,
which are defined on the group IV and the group VI subspace, respectively. Using
the threefold rotational symmetry around the (111) axis each part may be written as

W+ =w,_, (Cs+C5") (5.3.2)

with W = 3" exp(ik.R)(pso | H° | pyr). Under the assumption that only the two
lowest coordination spheres contribute, the matrix element ny reduces to the form

ny = —4(p,(0,0,0) | H° | p,(a, a,0))sin (k,a) sin (k,a) (5.3.3)

For the definition of the symmetry operator ('3, which describes a threefold rotation
around the (111) axis, it is most convenient to choose a coordinate system where
the z’-axis is parallel to the (111)-direction. In this coordinate system the symmetry
operator reads

Cs = exp (2mi/3L)) (5.3.4)

with the 2’ projection of the angular momentum operator L. Now, we write the
Hamiltonian that describes the effect of the ionization potential and the crystal field
as:
+ + 2m l

H* = FAjon + 2W;, cos (3L2> (5.3.5)
From this representation it is clear that the crystal field splits the threefold degenerate
level €& = FA,,, into the nondegenerate level ¢ = FA,, + 2W;;, and the twofold
degenerate level ef = FAjn — Wﬂ; The corresponding wave functions coincide with
the eigenstates of L/,

| ®5) = | D7) (5.3.6)
0 = Fo= (05 2i]07) (5:3.7)
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with | ®%), | @;t,) and | ®%) obtained from the transformation

2
O\ (T v Vs (1)
iqﬂéi B G ? chgti 535

The right hand side of Eq. (5.3.8) is a column of the three Bloch sums | ®X) with
n € {x,y, z} which are defined according to Eq. (5.3.1).

The Spin-Orbit Interaction

The spin-orbit interaction is given by the operator H:;EO = A* (L.o) with the coupling
constant A*, the spin operator o and the angular momentum operator L. Since
the parity is a good quantum number at the L point, the Schrodinger equation for
the electronic motion in the crystal separates into an equation on the group IV and
another equation on the group VI subspace with the Hamiltonian in each case given
by

2T
H* = FAjon + 2W,, cos (gL;) +A* (L.o) (5.3.9)

To get an explicit representation of the Hamiltonian in the six-dimensional space
(including spin degree of freedom) which is spanned by the basis wave functions |
O™ | @) and | @) we rewrite the dot product as L.o = Lo +L o\ +Lo..
Then we use the well known effect of the ladder operators L, = L) +iL; and o, =
1/2 (o), + ia;) on the basis wave functions. We arrange the basis wave functions so
that they are sorted by a descending total angular momentum which is, besides the
parity, a good quantum number. In this way we can bring the Hamiltonian to the
following block diagonal form:

hAE — W 0 0 0 0 0
0 hAE — W 0 0 0 0
0 0 —hA* —WE 2RA® 0 0

Hi = :FAion + v
0 0 V2hAE oW 0 0
0 0 0 0 —hAE—WZ V2rA*
0 0 0 0 V2hAT 2w
(5.3.10)

The solution of the Schrodinger equation is presented in Table (5.2). The results are
expressed in terms of the six material dependent parameters Aion, o, AT, A7, W
and W which are for a range of the IV-VI semiconductors given in Table (5.1). It
can be clearly seen that the ionization potential, the crystal field and the spin-orbit
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interaction split the twelvefold degenerate level (including the spin degree of freedom)
into six levels €& with n € {0, 1,2} which are twofold Kramers-degenerate. Due to W
and Hgo interactions the band gap covering the parent phase Fermi surface reduces
to a minimum at the L points and it is formed by the energy levels e, and €. The
eigenfunctions that correspond to the upper and the lower edge of the band gap take
a particularly interesting form since the crystal field and the spin-orbit interaction
mix two basis wave functions with different angular momentum and opposite spin.
The mixing is controlled by the spin mixing parameter ©F which is defined as

RA* hA* + 3WE
: + + x
sm@ = 2? COS@ = _Ty (5311)
with
1/2
A% = [27%*2 + (hA® 4+ 3WE)° /4} (5.3.12)

From a comparison of the different IV-VI semiconductors it can be seen that there are
some materials where the ordering of the gap edge states can be inverted compared
to vacuum, that means the even state gets into the conduction band whereas the odd
state into the valence band. As an example of a material with such a strong crystal
field and spin-orbit interaction we present in Fig. (5.3b) the L point energy bands in
SnTe. This band inversion makes the material topologically non-trivial [63, 75, 79]
because such level ordering is the opposite to what one expects in 'vacuum’, e.g. for
separated atoms (where W = 0).

The k.p Hamiltonian

In the previous section, we have presented an analytical derivation of the L point band
structure of a IV-VI semiconductor. We started with a simple cubic lattice and then
included subsequently the difference of the ionization energies of the group IV and
group VI atoms, the crystal field and the spin-orbit interaction. In this way we found
that the former twelvefold degenerate energy level (including spin degree of freedom)
splits into six separate energy levels which are each twofold degenerate. However,
an understanding of the low energy physics including the topological surface states
requires the momentum-dependent Hamiltonian close to the L point, which can be,
for example, obtained from k.p theory. The standard k.p procedure is to express the
solution of the Schrédinger equation H | W) = e | ¥) in the basis of an expansion
point exp(ik.r) | ®;). The coefficients of this expansion 1;(r) have to satisfy the
eigenvalue equation ) ; Hijj = ey with the k.p Hamiltonian H;; given by

h
Hi; = €045 + m (@ | kp|®)) (5.4.1)

where p = —ihV stands for the momentum operator and m for the electron mass. As
a basis we choose the four band edge states | ®3), K | ®;), | ) and K | ®]) which
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| 5) =| 23
€§ = :FAion + hAi — W;;
K| 0F) = — | o*h

| 0F) = cos & | ) 4 sin & | 1)

+
1 - :FAwn + Wzy hA* + A:t
K | CIDi) = cos == @i | q)iT) + sin & \ q)ii)

. + + +
A st g | ®5) = —sin & | &) + cos & | b7
62_:': zon+zy—_

K| (I>2i) — —gin & | (IDiT> + cos 2= @i | q)ii)

Table 5.2: The L point band structure of a IV-VI semiconductor. The band structure
is obtained from diagonalization of the Hamiltonian, Eq. (5.3.10), with A* defined
according to Eq. (5.3.12). The spectrum is expressed in terms of the six material
dependent parameters Aion, &, AT, A7, Wi and W which are for a range of IV-VI
semiconductors given in Table (5.1). To each eigenvalue belongs a pair of eigenstates
that is always presented in the column on the right; K stands for the Kramers op-
erator, the superscript '+’ for the parity of the wave function and the basis wave
functions | ®51), | &) and | 1) are defined according to Egs. (5.3.6) and (5.3.7).

are pairwise connected by the time reversal symmetry and which have, as indicated by
the superscript '+’, opposite parity. A consequence of the particular structure of the
basis wave functions is that the complexity of the calculation reduces dramatically:
the different parity of the two wave functions and the inversion symmetry of the dot
product k.p imply that both 2 x 2 blocks on the diagonal of the k.p matrix are zero

(@ [kp|®y) =P, |kp|IDy)
= (¢, | I'k.pI | D7)
= —(®; | kp]| D;)
—0 (5.4.2)

where [ stands for the inversion operator. The time reversal symmetry imposes fur-
thermore relations between the matrix elements in the off-diagonal blocks so that the
problem reduces to two matrix elements only:
(K®y | kp | K®f) = (®; | K'kpK | &7)*
— (@, |kp| O (5.4.3)
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(@y | kp | KO) = (KO, | Kk.pK | 1)
— (K®; |k.p| ®F) (5.4.4)

For a further simplification of these matrix elements we rewrite the dot product k.p
with help of the operator p/, = p| +ipj and the wave vector K} = kj & ikj. In
order to use the symmetry of the system it is here convenient to choose a coordinate
system where the 2’-axis is parallel to the (111)-direction. After replacing the band
edge states | @) and | ®;) by the expressions from Table (5.2) we can bring the first
matrix element, Eq. (5.4.3), to the form:

(@, | kp| )=~ %sin% cos %JF(CI)Jf | Kpl + K | @)
+ % cos % sin @7+<@5T | Ko+ Kp | 25T)
— sin % cOS %Jr(cbf | KLpl | q’i¢>
+ cos % sin %Jr(CIDOT | KLpl | ¢SFT> (5.4.5)

Then we use the identity [L, p+] = £hAps in order to show that the first two lines of
Eq. (5.4.5) vanish:

0= (D" | [LL,p] | @1") = £ | p | 1) (5.4.6)
0= (2,7 | [LL,p] | @5") = £h(®," | Pl | B¢T)

On these grounds Eq. (5.4.5) reduces to the form (®; | k.p | ®7) = mu k., with the
velocity v defined as follows:

1 e~ . et _
v =~ cos —sin T@OT PAKTS)
1. 60 ot
- sin — cos T@i | P, | ®il’> (5.4.8)

Similarly we replace the dot product and the basis wave functions in the second matrix
element, Eq. (5.4.4), which gives the following expression

_ + 1. e . Ch -1 o AW +!

(O | kp| K&7) =— §sm7sm7<¢+ | K\ pl +ELpl | @97)
1 e of

+ 5 cos ——cos 7<<IDET | Kp_ + K p, | o)

S} ot
— sin —-sin 7(‘1)? | KLpl | @5)

S} ot
+ cos —- cos 7(@5T | KLpl | @) (5.4.9)
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With help of the two commutators [L, py] = £hpy and [L),p.] = 0 it can be shown
easily that parts of this matrix element evaluate to zero

(@ [LL,p ]| @51 = m(@TH | pl | oY) = —a(@T [ | BT =0 (5.4.10)
(@ " [ [LL,p ]| @y = (@ T | pl | 01Ty = —n(@y " [Pl |ty =0 (5.4.11)
(@3 [ [LL,pL] | D*) = (DL | pl, | D7) =0 (5.4.12)
(@5 " [LL,p] [ 9X7) = n(@g" [pL | @) =0 (5.4.13)

so that Eq. (5.4.9) may be written as (®, | k.p | K®]) = mv k' with the velocity
vy given by:

1 Oy ot _
on :%COSTCOST(CDOT | o, | FT
1 . e et _
_%SIHTSH}T(@_‘—i’ /_F‘q)(')f‘i> (5414)

Overall, we conclude that the k.p Hamiltonian takes the form

A 0 hU”]{?; hULkZ/_
. 0 A h’ULkJ; —h?)”k‘;
B=1 hokt hook. —A 0 (5.4.15)
hvlkﬁr —hUHklz 0 —A

with A = (&5 — €])/2. The two velocities v and v, are for a range of IV-VI semicon-
ductors given in Table (5.1). These two velocities were obtained in Ref. [84] from a
tight binding approach that allows to express them through parameters of the band
structure.

The Band Structure in Vicinity of the L Point

The low energy excitations in the vicinity of the L point are given by the k.p Hamil-
tonian [Eq. (5.4.15)]. With this Hamiltonian we get the following Dirac-type equation

A h ' VK
(h ' VK, A ) Y =ep (5.5.1)
where V' = Diag(vy,vy,v)), k' = =iV and 7/ = (Tx,Ty,Tz) is the vector of Pauli

matrices. Solving this equation yields the results which are displayed in Table (5.3).
Each of the two bands is twofold degenerate and the bands are separated by a band
gap of 2A. Close to the L point the band structure can be approximated by an elliptic
paraboloid with the eccentricity controlled by the two velocities v and v, .
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|0 = N (195) + 3 () | 0F) + 720K | #7))

et = +\/A2 + 12 (VK2 + 03 K72)

| W) = N (K @5) +93K) | &) = m(K) K| @)

WD) = N (- (k) | 05) —72(K) K | @5)+] of))
€ _ = 7\/A2 + h? (vﬁk’f + vik’f)

| W) = N (=930 | 97) —m(K) K| 25)+ K| 87))

Table 5.3: The band structure in vicinity of the L points. The band structure is
expressed in terms of the material dependent parameters shown in Table (5.1). Each
eigenvalue ey, with | € {£} is twofold degenerate. The corresponding eigenfunctions
| \Ifl((l,b and | \Iff,%} are displayed in the column on the right represented in the basis
of the bulk band edge states | ®;), K | ®;), | ®]) and K | ®) which are defined
in Table (5.2). The components of each eigenvector are given in terms of v, (k') =
hoikL/(A + |e]) and vo(k') = hv K, /(A + |¢|). The normalization N ensures that
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CHAPTER 6

The Topological Surface States of a
Topological Insulator of the SnTe

Class

The IV-VI semiconductors feature, as we have seen in the previous chapter, a direct
band gap in the bulk spectrum at the L points of the Brillouin zone [73, 74]. The
band gap separates two Kramers doublets - at the upper and the lower band edge -
which have opposite parities. In the 'normal’ order, which is for example found in lead
telluride (PbTe), the odd states belong to the conduction band and the even states to
the valence band of the crystal. This order is called 'normal’ since such level ordering

Figure 6.1: Illustration of the band structure at surface. 'The valence and the
conduction band are separated by a band gap which takes negative sign on the Sn'Te
side and positive sign on the vacuum side. Both bands are bend downwards as the
surface is approached. The band gap is modeled by the function A(z) and the band
bending by the function p(z).

can be adiabatically connected to the level ordering in a free atom limit with the
odd states stemming from the group IV atom and the even states stemming from the
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group VI atom. However, in some materials such as tin telluride (SnTe) the band edge
states are inverted compared to the 'normal” order. These materials are referred to as
crystalline topological insulators [57, 58, 59, 60, 61, 62] and they host at the interface
to a 'mnormal’ material [75, 76, 77, 78, 95], or to vacuum [63, 64, 79, 80, 81, 82, 83|,
linear dispersing surface states. These surface states obey a Dirac-Weyl equation
and are a consequence of the particular topology of the bulk band structure. They
are protected by the specific mirror symmetry plane of the crystal [64]. Although the
Dirac-Weyl character of the topological surface states is universal, their spin properties
(i.e. the spin texture) are not. Understanding these properties requires a direct link
of the surface states to the bulk band structure. The model which we described in the
previous chapter offers a unique opportunity to explicitly trace this connection. In
the following we derive the topological surface states from the microscopic model of
the bulk and present their spin texture for the I' and the M points of the hexagonal
Brillouin zone of the (111) surface. We find that the spin texture is represented by a
vector field which is always tangential to a conic section. At the M points, the conic
section can be efficiently tuned by raising or lowering the band bending at the surface
and in this way it is even possible to drive the spin texture from the usual elliptic to
a hyperbolic form.

The Topological Surface States

There are two most common low-indexed surface planes which are available experi-
mentally in the IV-VI semiconductors: the (100) and (111) surfaces. The (001) surface
is the common cleavage plane. For this facet the two bulk L points project on the
same X point of the surface Brillouin zone. In this situation the scattering between
the two L points must be included. Yet the scattering matrix element is unknown,
and to avoid this uncertainty we shall focus in this work on the (111) surface. The
(111) surface is covered by one single type of atom. At the projections of the four
bulk L points, the I' and the three M points, there occur topological surface states.
These states are the consequence of the inverted bulk band structure that is found for
some IV-VI semiconductors, which are here referred to as the topological insulators
of the SnTe class. The present section addresses the derivation of these topological
surface states starting from the low energy spectrum of the bulk. To this end we take
the k.p Hamiltonian that we derived in the previous section and replace the band
gap A by a gap function A(z) = Agf(z). This function models the inversion of the
band gap across a contact which connects vacuum on the one side with the topological
insulator on the other side [75, 81]. The inversion takes place along the z direction
which coincides in our choice of the coordinate system with the (111) direction. We
model the material-vacuum border assuming that the gap is of infinite height on the
vacuum side, takes the zero value on the surface and limits to Ay < 0 on the SnTe
side. Henceforth, the function f(z) is subject to the following boundary conditions:
f(—=00) = —o0, f(0) =0 and f(co) = 1. Also there is a band bending of the valence
and the conduction bands close to the surface [Fig. (6.1)]. This effect is included
in our model via the function ¢(z) = ¢of(z) which we assume to have the same z
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dependence than the gap function. After substituting the gap and the band bending
function into the k.p Hamiltonian we find the low energy excitations of the surface
described by the following Dirac-type equation

(AY) —AA(Z)) v=(e—p(2) ¢ (6.1.1)

with A = 7.RVR'k, V = Diag (UJ_,UJ_,U”), k = —iV, the vector of Pauli matrices
T = (74, 7y, 7-), and the two velocities v and v, defined according to Eqgs. (5.4.8) and
(5.4.14). The rotation matrix R = R,(8)R,(«) allows to describe with the formalism
not only the surface states in vicinity of the I' point but also the surface states in
vicinity of the three M points of the surface Brillouin zone. The I' point is captured
by the case a« = § = 0. For the three M points the rotation matrix ensures the
rotation from the local coordinate system at each bulk L point, where the operator A
takes the form A = 7/.VK/, to a coordinate system which has the z-axis parallel to the
(111) direction. This transformation can be achieved by a rotation around the (111)
axis which is represented by the elementary rotation matrix R,(«) and a subsequent
rotation around the new y-axis which is represented by R, (). The rotation angles
for the three different M points, which may be seen in Fig. (6.2a), are given by
a; = (=1)"*7/6 and B; = arccos(1/3) with ¢ € {1,2,3}. The rotation angles are
chosen so that the I' and the three M points have a common z-axis. But it should be
noted that each of these high symmetry points has its own coordinate system in the
(111) plane. Furthermore it is necessary to stress that the rotation of the coordinate
system also implies a transformation to a new set of basis wave functions. While
the k.p Hamiltonian of the bulk is defined in the basis of the four band edge states
| @), K | ®;), | &) and K | ®]) the Hamiltonian of the band inversion contact,
Eq. (6.1.1), is represented in the basis | ®,), K | ®,), | ®p) and K | ) which are
obtained as

‘CI)(;> :efi% COS§‘(I)2>+€I(5 SID§K|(I)2> (612)
K’CI);> = —e*i% Sing‘@2>+eig COS§K|®2> (613)
‘Q);'> — e % Cosg ‘fbi">+ei% sin§K|<I>T> (6.1.4)
K ’(I)Z_> = —@_Z% Sing ‘@1"‘> + 62% cos §K |cI)1"‘> (615)

The relations from Table (5.2) can be basically taken in order to express the bulk
band edge states in the basis of the twelve Bloch wave functions | &5 ™), | ™) and
| ®=™). But it is necessary to keep in mind that the the spin wave function |[1) and
|[4) must be replaced by its representation in the rotated coordinate system

1) = e'2 cosg [Ta) — €2 sing [4ar) (6.1.6)
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1) =e 2 sing [Ta) +e 2 cosg [4ar) (6.1.7)

where |1)/) and |]s) stands for the spin up and spin down wave function in the local
coordinate system of each M point.

In order to solve the eigenvalue problem, Eq. (6.1.1), we use a similar strategy as
deployed in Refs. [76, 95]: first we make a plane wave ansatz exp(ik,.r; ) and then
we multiply Eq. (6.1.1) with the operator on its left hand side. This procedure yields
the following equation

B2 + A2 + {A, B}k, — (e — 0(2))? + A(z)?

B (90'(2) E N(z) i A/(z)) : B} v (o1

with A = FL(T.RVRTkL), B = h(T.RVRTeZ) and k, = —i0,. The first derivative
of the gap function A(z) and the work function ¢(z) are in this expression denoted
as A'(z) and ¢'(z). Furthermore we have introduced here the wave vector k; as a
standard notation for the projection of k into the (111) plane and e, as a unit vector in
z direction. It can be easily seen that Eq. (6.1.8) represents a system of four differential
equations in z which can be decoupled using under the basis transformation ¢ = S.
The transformation is given by the matrix S

Ao Voo + Ao \/900—A0>
S=4|——— U 6.1.9
2 (v — AF) (_\/900+A0 Vo= )% (6.1.9)

with the unitary operator U = € [ay (1 —i7,) 4+ ia_ (1, — 7)] /2, the coefficient
ay = \/1 + [v; sin® 8 4 v cos? 8] /vy and the velocity v; = \/vi sin? B + vﬁ cos? 3.

After the transformation of Eq. (6.1.8) we obtain for each spinor ¢, and (_ in the
wave function ¢ = (¢4, (_) a separate system of differential equations

[B*(k 4+ k.)* + W(2)? F hvio. W (z)

+{A, BHk + k)] ¢ = ﬁ—AM 21 ¢ (6.1.10)
) z + Ag—@g € + .L.

with W(z) = /A2 — @2 [f(2) + epo/ (AZ — ©2)]. In order to eliminate the term linear
in k, which occurs on the left hand side we use the possibility to set the parameter

to the value —Tr{ A, B}/(2hTrB?). In this way the eigenvalue problem can be brought
to the form of a supersymmetric equation [96]:

[—ihvlazk‘z + W(z)] [ihvlazkz +W(z)|Cs
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2 2 {AaB}Q 6280?)
R e 1 (6.1.11)

= |€

This form is particularly convenient since it has a product of two adjoint operators
on the left and a scalar matrix on the right. The low energy excitations are given by
the ground state of the supersymmetric equation and due to its particular structure
the condition for the ground state is simply [hvi0,0, =W (2)](x = 0. This latter
equation has two normalizable solutions which are of the form

Go=cy (3) o2 C=c ((1’) o(2) (6.1.12)

(a) (b)

2A

Energy

A

-

K' + F’M - K

Figure 6.2: The Brillouin zone of the (111) surface [Fig. (6.2a)] and the spectrum of
the topological surface state [Fig. (6.2b)]. The Brillouin zone has four high symmetry
points where Dirac cone surface states exist: the I' point and the three M points. The
derivation of the topological surface states that is presented in the current chapter is
for each of these high symmetry points carried out in an own coordinate system which
is in Fig. (6.2a) highlighted in red. Due to band bending at the surface the apex of
the Dirac cone is shifted, as may be seen in Fig. (6.2b), downwards away from the
center of the two bulk bands €] and e,. When the energy approaches the value n_
the surface states merge with the valence band of the bulk.

vector, a coefficient ¢y € C and an envelope function g(z). The envelope function
g(z) defines the asymptotic decay of the surface state into the bulk and must satisfy
the differential equation [hv,0, + W (z)] g(z) = 0. Its solution is evidently given by

9(z) = N exp [—hi /0 e W(z)] (6.1.13)

U1
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with the normalization chosen so that ffooo dz g(z)?> = 1. The fact that the wave
function must be normalizable over the whole z range implies that the superpotential
must change its sign asymptotically. This requirement manifests in the topological
boundary condition which requires (asymptotically) the band inversion. However, the
presence of the work function makes the situation more complicated and brings up
two supplementary conditions: the work function of the material must be smaller than
the gap function which can be expressed as |pg| < |Ap| and additionally the energy of
the surface state € is limited to the range n, < € < n_, with 1, = ¢(s00) (1 — AZ/¢?)
and s = sgn(yp). For downwards band bending (¢¢ > 0), which has been found for
the tin terminated surface of SnTe [97], the latter condition means that the surface
state exists only above a minimum energy n, and below that energy merges with the
bulk valence band. This is shown in Fig. (6.2b).

In order to determine the full surface state wave function it remains to calculate the
two coefficients ¢, and c¢_. These coefficients encode the coupling of the two spinors in
the full wave function ¢ = S71(¢;,¢_)T and must be determined from a substitution
of 1 into Eq. (6.1.1). This procedure yields a system of four equations of which only
two are independent and may be brought to the form of a Dirac-Weyl equation

0 Uk — 10 Ky c+\ _ [cq
ey (vzkfc + v, ky 0 ) (c_) - (c_ (6.1.14)

with v = /1 — 3/A2. The Dirac-Weyl equation has been similarly presented in
recent publications [63, 80, 82, 98] where the topological surface states have been
derived in a model which is based on symmetry considerations. However, a connection
to a realistic material is in these works entirely missing. This connection is in our
model given by the two Kramer conjugate basis wave functions X and KX which
relate the pseudospin degree of freedom of Eq. (6.1.14) to the microscopic variables
of the bulk. For upwards band bending the wave function X can be obtained from
the transformation S71(1,0,0,0)” and for downwards band bending we have to use
S71(0,0,1,0)T. Both cases may be summarized in one formula

| X)=a F | D) +a F-K|®,)+a.Fy|®)+a F.K|®) (6.1.15)

where we have introduced Fiy = 1/21/1 % ¢o/Age™/*. From the full expansion of
the wave function it can be seen that the above expression depends on the physical
spin. The physical spin enters through the bulk band edge states and is already at
this stage entangled with the p-orbital. This intrinsic spin dependence is a feature
which is missing in graphene where the low energy excitations also obey a Dirac-Weyl
equation but are completely spin unpolarized.

The spectrum of the Dirac-Weyl equation is represented by an elliptic cone

€, 1 = Ly Jv2k2 + 7 k2 (6.1.16)

with [ € {£} and v, = (vjv.)/vi. The semi-axes of the ellipse are for any rotation
angle [ aligned with the axes of the coordinate system. This is ensured by the
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particular choice of coordinate system that we made at the beginning of the chapter.
The semi-axis in k, direction is (through v,) a function of the rotation angle 5 and
this is the reason why the spectrum takes different form at the I' and the M point of
the surface Brillouin zone: at the I' point the two velocities v, and v, are equal which
means that the points of constant energy lie on a circle. However, at the M point
the two velocities are different and this results in a spectrum which is represented by
an elliptic cone. The surface Brillouin zone together with the local coordinate system
for each Dirac point is illustrated in Fig. (6.2a) and the low energy spectrum which
is found in vicinity of the I' and the M point may be seen in Fig. (6.2b).

The eigenstates of Eq. (6.1.14) are given by Dirac-Weyl spinors

(2) - \% ( lelw) (6.1.17)

with ¢ = tan'[v, k,/(v.k,)]. Expressed in terms of the two basis wave functions X
and KX the full surface state finally reads

W) = (e | X) + oK | X) )e™omeig(z) (6.1.15)

This equation represents one of the main results of this work. It describes the topo-
logical surface states on the (111) surface of the topological insulator of the SnTe class
expressed in terms of the microscopic degrees of freedom of the bulk. The two rota-
tion angles a and g which enter through the basis wave functions X and KX allow
to access the four inequivalent Dirac points. These surface states, with their conical
spectrum and the anisotropy at the M points, are in agreement with recent works
[79, 81, 82] but provide, in contrast to these works, a link to the parameters of the
bulk. However, our model does not reflect the energetic disparity between the I' and
the M point Dirac cone which has been reported in Ref. [79]. The shift comes from
an acoustic deformation at the surface and must be included in the derivation of the
bulk band edge states. The acoustic deformation leaves the wave functions unchanged
but shifts the energy of the three oblique bulk L points in the surface region which
results then in a shift of the energy of the M point and the I' point Dirac cone [99].
Finally it is interesting to note that the formalism that is presented here can also be
used to describe other facets of the crystal and other materials which are described by
the Hamiltonian, Eq. (5.5.1). However, for topological insulators that do not belong
to the class of IV-VI semiconductors, the basis wave functions | ®;), K | ®,), | ®])
and K | ®]) must be replaced by appropriate expressions.

The Spin Texture

The nontrivial topology of the bulk band structure of some of the IV-VI semiconduc-
tors such as SnTe manifests, as shown in the previous section, in Dirac-Weyl surface
states at the I" and the three M points of the hexagonal Brillouin zone of the (111)
surface. A particular achievement of our formalism is that it links the topological
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surface states in an analytical way with the bulk L-point wave functions. These band
edge states are spin-polarized and from the given structure of these states one can
easily determine the spin texture on the surface. According to the definition of the
surface state, Eq. (6.1.18), the spin texture follows from the expression

<kal ‘ g ’ \IIkJ_l> =[x |:€i¢<X ‘ oK ’ X>:| (621)

where o is the spin operator. For a further analytical evaluation we use the connection
to the basis wave functions | ®;), K | ®;), | ®]) and K | ®) and write the matrix
element (X | 0K | X) as a linear combination of the twelve matrix elements which
are shown in Appendix D.1. This calculation yields the following result

—asin ¢
<\I]kJ_l ’ o ‘ ‘IjkLl> =1 bCOSQS (622)
—m,, sin ¢

with @ = ,01—81n 2B + pgvz cos’ff, b = py and m, = %sin(Zﬁ) [”—z — Z—ipl} and
where we have furthermore introduced p1 (14 £2) cos OF + (11— %2)cos© and

pr=—2(1+£ 2) sin? &~ + -2 2) cos? ©-. One immediately notes that the in-plane
part of the spln texture is a Vector ﬁeld Wthh is tangential to a conic section of the
implicit form kZ/a® 4 sgn(ab)k;/b*> = 1 while the out-of-plane component is governed
by the parameter m,. The absolute value of the spin does not necessarily equal to
one. This can be proven as shown in Appendix D.2 with help of the Cauchy-Schwarz
inequality and comes from the fact that the spin space is in the basis wave function
X entangled with the p-orbital. The spin texture is controlled by the parameters of
the bulk: the spin mixing parameters © and ©~, the two velocities v and v, as well
as the band bending parameter pg/Ay. In addition to that it may be seen that the
spin texture is a function of the rotation angles v and 3 and this results in a different
spin texture at the I' and the M point of the (111) surface.

At the I' point, where g = 0, the spin is polarized exactly in the surface plane. The
two parameters a and b are equal and for this reason the spin is tangential to a cir-
cle. For the conduction band of SnTe, where downwards band bending (¢9 > 0)
is reported for the tin terminated surface [97], we find, in agreement with recent
works [81, 100], a helical spin texture with the winding number —1. Via a manip-
ulation of the band bending at the surface, which can be tuned by the gate volt-
age or by doping of the the surface, it is possible to tune the absolute value and
the winding number of the spin texture. The spin texture vanishes altogether at
©o/Ng = (sm2 or _ cos? 0—) / <sin2 9%+ cos? %’) and, for smaller band bending, it changes
the winding number to +1.

At the M points, where § = arccos(1/3), we find for downwards band bending
(po > 0) a spin texture which is tangential to an ellipse and has a winding number
—1. Lowering the band bending offers the possibility to control the two parameters
of the conic section, a and b, in sign and in magnitude. This effect can be seen in
Fig. (6.3) where the texture number tanh(a/b) is plotted as a function of @ and ©~
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Figure 6.3: The texture number tanh(a/b) plotted as a function of the spin mixing
parameters © and O~ at the M point of the (111) surface Brillouin zone. From the
top left to the bottom right picture the band bending is lowered from 0.6, through
—0.24 and —0.4, to —0.8. The position of the material Sn'Te is always highlighted in
white.
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Figure 6.4: The spin texture at the M point of the (111) surface of SnTe. From the
top left to the bottom right picture the band bending is lowered from 0.6, through
—0.24 and —0.4, to —0.8 and the spin polarization changes accordingly from elliptic
with winding number —1, through linear and hyperbolic to elliptic with winding
number +1. The density plot in the background illustrates the absolute value of the
spin.
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for different values of the band bending parameter. From a comparison of the different
density plots one immediately notes that the blue region, where the two parameters
a and b have opposite signs, shifts in the plane and changes its spatial extent. The
point in the parameter space which corresponds Sn'Te is highlighted in white and the
corresponding M point spin texture is shown in Fig. (6.4). Most striking is the obser-
vation of a hyperbolic spin texture in the region where the texture number is negative.
At the border of this region which is indicated by a black solid and black dashed line
in Fig. (6.3) either a or b is zero and this results in a linear spin polarization along
the y- or x-axis. Finally, in the region where the texture parameter is positive the

‘(d) () (b) ‘(a)
T T T T T T T T [ T T ) 1
0.8+ \ —— Texture parameter L‘
= o6 £ 105 +
-— o -—
g @ do 8
Q i o
T 0.2 {2
g | |
s [ B ittt -1-0.5
0 — In-plane
i —— Out-of-plane i
- 1 1 Il | Il 1 | 1 1 ‘ 1 1 I -
0-24 05 0 0.5 i

Band bending parameter ¢ /A,

Figure 6.5: The texture parameter tanh(a/b), the in-plane absolute value of the
spin and the parameter m, plotted as a function of the band bending parameter
at the M point of the (111) surface of SnTe. The form of the spin texture can be
read off from the texture parameter: it changes from elliptic with winding number
—1 through linear and hyperbolic to elliptic with winding number +1 as the band
bending is lowered from +1 to —1. The absolute value of the spin is anisotropic in
the surface plane and takes a value in the gray shaded region. The four arrows at the
upper edge of the picture tag the band bending which is taken for the spin texture
plots in Figs. (6.3) and (6.4).

usual elliptic spin texture is found, with winding number —1 for a Ab > 0 and +1 for
a Ab < 0. The density plot in the background of Fig. (6.4) represents the absolute
value of the spin. It can be clearly seen that the absolute value of the spin changes
dramatically as a function of the band bending and is in some cases highly anisotropic
in the surface plane. The latter behaviour reflects the fact that the spin polarization
is a periodic function in ¢ = tan[v, k,/(vyk;)]. According to Eq. (6.2.2) the in-plane
absolute value lies in the range between |a| and |b| while the out-of-plane component
takes a value between 0 and m_. A deeper insight into the evolution of the spin polar-
ization as a function of the band bending may be obtained from Fig. (6.5) where the
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spin texture parameter tanh(a/b), the range of the in-plane spin absolute value and
the parameter m_ are plotted. At a band bending of +1 the spin is mainly polarized
in the surface plane. When the band bending is lowered the in-plane absolute value
reduces dramatically, while the parameter m, stays, in contrast to that, constant at
about 0.08up. The evolution of the spin texture number confirms the observation
that the spin momentum locking at the M points is highly non-universal and it can
be tuned as a function of the band bending.
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CHAPTER 7

The RKKY Interaction on the Surface
of a Topological Insulator of the SnTe
Class

In the second and the third chapter of this thesis we discussed the RKKY interaction
mediated by a gas of spin unpolarized electrons such as, for example, in graphene
or in bilayer graphene. A general feature of these spin unpolarized systems is that
they allow only two possibilities for impurity-spin interaction, either ferro or antifer-
romagnetic. The situation gets much more interesting on the surface of a topological
insulator of the SnTe class where the presence of spin-polarized surface states gives
way to a much richer variety of spin coupling schemes. Whereas the RKKY interac-
tion is, due to the band gap, strongly suppressed in the bulk semiconductor, studying
this interaction on the surface opens the possibility to probe the existence of topolog-
ical states. The topological surface states are, similar to the low energy excitations of
graphene, described by Dirac-Weyl spinors which are characterized by a pseudospin.
The real spin dependence enters through the basis wave functions which are linked
to the microscopic variables of the bulk. In that respect, the topological insulator
of the SnTe class is exceptional, since such a connection in analytical form is not
available for other known topological insulators. The route connecting the surface
state to the bulk spectrum was presented in the previous chapter and here we use
this relation in order to derive an analytical expression for the RKKY interaction.
We find an interaction energy which has, apart from the usual Heisenberg term, also
an XY-type, an Ising-type and a Dzyaloshinskii-Moriya-type term. This results in
an RKKY interaction which allows, apart from the usual ferro- or antiferromagnetic
coupling, much more complex spin interactions.

The Interaction Energy

In the following we consider two substitutional impurities on the (111) surface of a
topological insulator of the SnTe class which is terminated either by elements of the
IVth or VIth group of the periodic table. Both moments couple via a single lattice
site to the gas of spin-polarized Dirac-Weyl electrons and in this way there arises an
interaction between the two moments. As a model we assume that only the topological
surface state at I' contributes to the RKKY interaction. This may be justified by the
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energy shift between the I" point and the M point Dirac cone which amounts 170meV
[79]. Due to this shift, the contribution of the M point Dirac cone is on the undoped
or weakly doped surface is much weaker. In addition to that, we set for simplicity of
the calculation the band bending at the surface to zero. The energy of the impurity
spin-spin coupling can be determined from the minimization of the interaction energy
which we derived in the first chapter of the thesis. Expressed in the basis of the
topological surface states X and K X the interaction energy reads

Eg”t(RL):—% (h;)/ dE
S (Tr [(0.81), G (-R 1, E) (6.82), G*" (R, E)]) (7.1.1)

where R, is the impurity separation vector and A describes the strength of the
electron-impurity coupling. The index « takes the value =’ on the group IV and
"+ on the group VI terminated surface. In order to determine the interaction energy
we need the real space propagator GY*(R |, FE) and the scattering matrix (¢.S), in
the tin or in the tellurium subspace. The momentum space Green’s function can
be obtained from the analytical form of topological surface state and its spectrum,
Egs. (6.1.17) and (6.1.16). A subsequent Fourier transform yields the following real
space propagator

R, ) — B+ HY (DR )) e O HL (LR, ) 12)
h2ULQSBZ zezaHl((i;rm)Rl) H&(%RL) h

where H!(z) stands for the Hankel function, Qg5 for the area of the surface Brillouin
zone and where we have expressed the impurity separation vector in polar coordinates
with the radius R, and the polar angle 0. It remains to determine the (o.S;),-matrix
which can be easily done with help of the matrix elements of the spin operator that
are presented in Appendix D.1. In the group IV subspace we obtain the following
matrix

L[ Sfcos©®  iS; cos® &~
SZ — = ¢ — 713
(0:5i)- 2 (—iSj’ cos? &= —SZcosO© ) ( )
while in the group VI subspace we have
SZcos©F  —iS; sin? &~ @
S, 7.14
(o:85)., (ZS+ sin? 2 S7cos OF ) ( )

with S = S* +4SY and i € {1,2}. These two matrices describe, depending on the
termination of the surface, the scattering at a tin or tellurium site. Substitution of
the appropriate (o.S;) -matrix and the Green’s function G**(R |, E) into Eq. (7.1.1)

95



7.1. THE INTERACTION ENERGY

leads to the following interaction energy

212 AN?

EM'RL) =~ —— ([AkF(RL) — Bip (R1)] [0 ST S5 + baST 53]
sBzVL
+ [Akp (R1) + By (R1)] a0 5753
+ [Crp (RL) + Dy (RL)] €a [S7S5 — S7S5) ) (7.1.5)

with C' = 72hA\?/ (v, Q%p,). It can be clearly seen that the interaction energy consists
of three qualitatively distinct terms that support each taken on its own a rather
different spin coupling schemes: firstly, there is an Ising-type term which has the form
S755 and favors ferro- or antiferromagnetic coupling along the z-axis. Secondly, there
occur two XY-type terms which are of the form S7S3 or SYS3 and support ferro
(FM)- or antiferromagnetic (AFM) coupling along the z- or y-axis. Finally, there is a
Dzyaloshinskii-Moriya-type (DM-type) term which has the form (S7S5 — S;S5) and
which favors the two spins in the zz-plane in a configuration where both spins have
a relative angle of 90 degrees. The contributions of these three individual terms are
in Eq. (7.1.5) weighted by a linear combination of the functions Ay, (R)), By, (R.),
Cyp(R1) and Dy, (R)) and the coefficients a,, b, and ¢,. The coefficients a,, b, and

(o ba Ca

20° 1 20° 1
1 cost (9++(+a)) 1 cos? @2 1 ¢os ©° cos? <@++(+a)>

Table 7.1: The coefficients for the RKKY interaction on the surface of a topological
insulator of the Sn'Te class. The spin mixing parameter ©% is for a range of IV-VI
semiconductors given in Table (5.1). The parameter « takes the value '+’ on the
tellurium terminated surface and '—’ on the tin terminated surface.

o are given in Table (7.1). They depend through the spin mixing parameters ©*
on the material and on the termination of the surface. By definition, a, and b, are
positive while ¢, can change its sign over the full ©%range. The functions Ay, (R.),

BkF(RJ_), OkF(RJ_) and DkF(RJ_) are

App(RL) = g?i% : dk, k> Jo (kLR Yy (k Ry ) et (7.1.6)
Bi.(R.) = g lim : dky K2 Jy (kR Yy (kL Ry ) e ™" (7.1.7)
Crp(R1) = gg% : dky K2 Jy (kyRy) Yo (kL Ry)e sk (7.1.8)
Dy (Ry) = g lim : ki K2 Jo (kLR Y: (ki R.) ekt (7.1.9)

96



CHAPTER 7. THE RKKY INTERACTION ON THE SURFACE OF A
TOPOLOGICAL INSULATOR OF THE SnTe CLASS

with £, = F/(hvy). The fact that Egs. (7.1.6) - (7.1.9) as well as the interaction
energy, Eq. (7.1.5), depend solely on the impurity separation R, and not on the
polar angle 6 comes from the special choice of the coordinate system. In Eq. (7.1.5)
we rotated the coordinate system so that the z-axis is aligned with the impurity
separation vector.

The RKKY Interaction on the Pristine Surface

The profound impact of the bulk parameters on the RKKY interaction can be seen
well for a pristine surface, where the Fermi energy lies at the apex of the Dirac
cone. The pristine surface is a special case where no free particles are available. In
graphene this leads, to an unusual monotonic 1/R? decay of the RKKY interaction
and a coupling which is, depending on the sublattice configuration, purely ferro- or
antiferromagnetic. Now we want to figure out what happens on the surface of the
topological insulator which has a similar spectrum but, in contrast to graphene, spin-
polarized surface states. To this end it is convenient to bring Egs. (7.1.6) - (7.1.9)
with the help of Appendix B to the form of a double integral

K2k /
RJ_ = hm/ dk | / dkl k’2 22 Jo (k)j_RJ_) Jo (kJ_RJ_) e*S(kJ_Jrkl) (721)

K k:2 ,
Bo(Ry) = lim | "k, / W, gy D KLR) (b Ry e () (729)

k% ,
C(RL)—hm ik, / di, e 22 Ji (K RL) o (kL Ry e*(itkl)  (7.0.3)
kLkL

[ Jo (K Ry)Jy (kLRy) e (ke i) (7.2.4)

D(RL)—hm dkL/ dk',

A comparison of Eq. (7.2.3) and Eq. (7.2.4) makes evident that Cy(R, )+ Do(R,) = 0.
The remaining two integrals Ag(R,) and By(R,) can be taken with help of the usual
Laplace trick that we have introduced in Chapter 3 of the thesis. In this way we obtain
Ao(Ry) = 7/(32R3) and By(R,) = —37/(32R3) which then allows us to write the
interaction energy as follows

T3 A2

Eint R —
« (Ry) 80 p v 1Y

[aa (25782 — SYSY) + 2b,57Sz] (7.2.5)

One immediately notes that the DM-type term is absent in the interaction on the
undoped surface. From a minimization of Eq. (7.2.5) we find that there are depending
on a, and b, two fundamentally different cases. For a, < b, the two spins favor
a ferromagnetic coupling in the direction normal to the surface while for a, > b,
both spins couple ferromagnetically in the surface plane, parallel to the connection
vector. The case a, = b, is a special one since the minimum of the interaction energy
becomes degenerate with all possibilities for ferromagnetic coupling in the xz-plane.
In Fig. (7.1) the in-plane coefficient a, and the out-of-plane coefficient b, are plotted
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Figure 7.1: The evolution of the the in-plane coefficient a, and the out-of-plane
coefficient b,, as a function of ©% for the group IV and the group VI terminated surface
of a topological insulator of the SnTe class. The color scheme in the background
highlights the two distinct RKKY regions that feature ferromagnetic (FM) coupling
either in the surface plane or normal to the surface plane. The alloy Pb,Sn;_,Te lies
in the black shaded area.

as a function of the material dependent parameter ©% for the group IV (o = —) and
the group VI (a« = +) terminated surface. The corresponding spin coupling scheme
is given as a background color and the position of SnTe (07 = 2.63 and ©~ = 1.42)
is indicated by a black solid line. By alloying the SnTe crystal with lead we can
slightly impact the parameter ©" and ©~ and hence access the region which is in
both pictures shaded in black. The corresponding ©T-range (© -range) lies in the
brown region where we expect ferromagnetic coupling in the surface plane. However
it should be noted that topological surface states exist in Pb,Sn;_,Te only up to a
certain lead concentration. In previous experimental works the topological phase has
been observed up to a concentration of x = 0.25 [77]. With help of Table (5.1) we can
do a similar analysis for SnSe and its alloy Pb,Sn;_,Se. We find the same in-plane
ferromagnetic coupling.

The RKKY Interaction on the Doped Surface

Depending on the termination of the surface either donors or acceptors may prevail
on the surface, and this shifts the position of the Fermi energy either up or down. An
analytical evaluation of the interaction energy is in this case possible only for large
impurity separations. To this end we take the interaction energy, Eq. (7.1.5), make
the substitution x = ER, /(hv,) and replace the Bessel functions by its asymptotics
for large arguments. In this way we can bring the function Ay, (R) to the form

o0

1 L. s
App(RL) = — R_i il_l}(l) dx x [cos (2x) + 1, 50 (2x)| e (7.3.1)
TF
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A subsequent integration leads to the result:

1 ) 1
AkF(RJ_) = W [kF Sin (2]{;FRJ_) + E COS (2kFRJ_):| (732)
1

Similarly we proceed with the functions By, (R, ), Cy.(R,) and Dy,.(R,) and find
the interaction energy in the lowest two orders given by

T2 kph\?

Eint R —
@ (Ra) Vgppvi R

sin (2]{:FRL) (aanSQZ + ba5f55>

¢ cos (2kpR)) (stg - stg)]

m2h\?
4Q§BZUJ-R§_

cos (2kpR.) (3%5;05; — 2a,8VSY + 3banS§>
+ 3¢, sin (2krR.) (stg - stgf)] (7.3.3)

In the leading order of this expression (which decays as 1/R?) we have a contribu-
tion from all three distinct terms - the Ising-type, the XY-type and the DM-type
term - which are weighted by the periodic function sin (2krR) or cos (2krR) and the
coefficients a,, b, or ¢,. In order to figure out which impurity spin configuration is
energetically favored it is convenient to consider first the case where cos(2krR) ~ 0.
Under these circumstances the DM term vanishes and we find that the two spins cou-
ple for a, < b, ferro- or antiferromagnetically parallel to the surface normal and for
aq > b, either ferro- or antiferromagnetically parallel to the connection vector. When
the cos(2krpR) increases, the DM term gets more and more important and causes
a canting of both spins with respect to the in-plane or out-of-plane reference state.
These two regions are highlighted in Fig. (7.2) in brown and turquoise. In addition to
that there occurs a third region which is highlighted in yellow: when the out-of-plane
coefficient b, and the DM coefficient ¢, are small and a, sin(2krR) ~ 0, the leading
order goes to zero and the next order of Eq. (7.3.3) (which decays as 1/R3) must be
taken into account. The second order is for cos(krR) ~ —1 dominated by the S7S5%-
term and there hence occurs in a certain window around the point 2kpR ~ 7 a new
type of interaction where a ferro- or antiferromagnetic coupling parallel to the y-axis
is preferred. The tellurium terminated surface of the alloy Pb,Sn;_,Te lies, depending
on the lead concentration, somewhere in the brown region which means that the two
impurity spins cant with respect to the in-plane FM or AFM reference state. But
interestingly, on the tin terminated surface it is possible to access the yellow region
where the axis of the spin coupling flips in a small window to the direction normal to
the xz-plane.

The evolution of the impurity spin coupling as a function of the impurity separation
is illustrated in Fig. (7.3): on the tin terminated surface of SnTe both impurity spins
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Figure 7.2: The evolution of the coefficients a,, b, and c, as a function of ©% on
the doped surface of a topological insulator of the Sn'Te class. There are three distinct
regions for the RKKY interaction that are highlighted in different background color:
in the brown and in the turquoise region both spins cant with respect to a ferro- or
antiferromagnetic reference state parallel to the x- or z-axis. When the out-of-plane
coefficient b, and the DM coefficient ¢, are small there exists a narrow window for
the impurity separation where a collinear coupling parallel to the y-axis is preferred.
The corresponding ©% range is highlighted in yellow.

couple at an impurity separation of 20A in Fig. (7.3a) ferromagnetic parallel to the
connection vector. At higher impurity separations the two spins start to cant. This
leads, as may be for example seen at at 40A, to an increasing out-of-plane compo-
nent. At an impurity separation of about 61A the canting angle reaches its maximum
before finally at 80A the canting angle decreases and is now measured with respect
to the new AFM reference state. In the further course of the evolution the two spins
oscillate between the two types of interaction. The period of this oscillation is given
by the Fermi energy which is here set to 0.1eV. The corresponding behaviour on the
tin terminated surface of PbgasSng75Te is shown in Fig. (7.3b): in large parts the
interaction resembles that on the surface of SnTe but in small window from 59A and
67A a coupling in the direction parallel to the y-axis can be observed. As shown in
Fig. (7.3d) the canting angle is in that region quite small so that the coupling can
considered to be, as a good approximation, ferromagnetic.

It should be noted that the Fig. (7.3) is obtained from a numerical minimization of the
exact interaction energy and shows at low impurity separation some features which
cannot be understood from the asymptotic form: from the DM-type term one would
expect strong canting at R, = 0 and zero canting at R, = 7/(4kp) but in contrast
to that it can be observed that the canting angle goes in the interval from 61A to
0A continuously to zero. This is just a manifestation of the fact that the asymptotic
form is not valid for small argument. Since solely the product kr R, enters the Bessel
functions in the exact interaction, a similar problem occurs in the limit Fr — 0. In
particular at Er = 0 the integral must be taken exactly as presented in Section 7.2.
Under these circumstances the DM-type term vanishes, the canting angle is always
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zero and the yellow shaded region, which may be seen in Fig. (7.2), cannot be accessed
anymore.
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Figure 7.3: The RKKY interaction on the tin terminated surface of Sn'Te
[Figs. (7.3a) and (7.3¢)] and Pbg 25Sng 75 Te [Figs. (7.3b) and (7.3d)] at a Fermi energy
of 0.1eV. The SnTe crystal features two distinct types of interaction: canting with
respect to the ferromagnetic coupling parallel to the x-axis (interaction type 1) and
canting with respect to the antiferromagnetic reference state parallel to the x-axis
(interaction type 2). The canting angle is given in Fig. (7.3c). By alloying the SnTe
crystal with lead it is possible to open a small window where ferromagnetic coupling
parallel to the y-axis is preferred (interaction type 3).
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CHAPTER 8

Conclusions

This work addresses the magnetic structure and magnetic interactions in two classes
of materials that host chiral low energy excitations. In the first part of the thesis we
focus on graphene and few layer graphenes for which the spin degree of freedom can
be considered, to an excellent approximation, as decoupled from the position space
wave function. The low energy physics in graphene and bilayer graphene is described
by massless and massive chiral quasiparticles, respectively. In Chapters 3 and 4 we
investigate the RKKY interaction and consider the effect of an electric bias applied
across the bilayer. The out-of-plane electric field opens a gap in the bilayer spectrum
and we demonstrate that this qualitatively alters the RKKY interaction. The second
part of the thesis is dedicated to the spin physics in a topological insulator (TT)
which features - similar to the graphene monolayer - a gas of Dirac-Weyl electrons
on its surface. In contrast to graphene, however, spin and coordinate wave functions
are fundamentally entangled in a TI surface state. In previous analytical works the
spin physics has been treated in a generic Dirac-Weyl model based on symmetry
considerations. Such phenomenological model is essentially unconnected to the bulk
band structure although the very existence of the Dirac-Weyl surface states is due to
the topology of the bulk spectrum. Hence it cannot reveal the relation between the
properties of the TI surface state (such as the spin texture and RKKY coupling) and
the parameters that govern the bulk band structure. In Chapters 5-7 we describe a
realistic model of the topological insulators of the tin telluride class that, as we show,
allows a fully microscopic theory of the T1I surface state.

Graphene is particularly interesting for the RKKY interaction since it has, in contrast
to the usual electron gas, a linear spectrum with two valleys and a density of states
that vanishes at the apex of the Dirac cone. The specific form of the spectrum leads,
as reported in earlier works, at zero doping, to a monotonic 1/R? decay and at finite
doping to an oscillatory interaction that decays as 1/R?. The multivalley nature of the
spectrum is responsible for additional oscillations on the scale of the lattice constant
which make the interaction extraordinarily sensitive to the local electron-impurity
coupling scheme. This can be particularly well seen in case of the RKKY interaction
in AB-stacked bilayer graphene which is addressed in Chapter 4 of the thesis. We
focus on the most realistic case of an intercalated impurity, which is situated between
the two layers of the bilayer. We find that in various coupling schemes the impurities
show an asymptotically discontinuous RKKY interaction (as a function of the Fermi
energy) at the edge of the antibonding (or bonding) band. For a Fermi energy just
below the antibonding band one has an oscillatory RKKY interaction which abruptly
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changes to antiferromagnetic once the Fermi energy crosses the gap. This reflects
an underlying topological transition from a single- to a double-sheet Fermi surface.
This unusual T' = 0 behaviour leads to a qualitative change of the RKKY interaction
with increasing temperature in which, for Fermi energies close to the antibonding
band edge, one finds that a low temperature oscillatory RKKY goes over to a high
temperature antiferromagnetic RKKY interaction. We also find that one of the most
effective and practical ways to tailor the form of the RKKY interaction is to apply
an interlayer bias. The resulting “Mexican hat” spectrum leads to a complex RKKY
in which the form of the interaction depends on whether the Fermi energy is “below
the hat” (i.e., in the band gap), “on the brim of the hat”, or “above the hat”.

The RKKY interaction due to spin-polarized surface states can be studied on the
surface of a topological insulator. It is well known that some IV-VI semiconductors
such as SnTe host linear dispersing, spin-polarized states on their (111) surface which
are protected by the mirror symmetry of the crystal. These states exist not only at the
" but also at the three M points of the surface Brillouin zone. In Chapter 6 we derive
these topological surface states and their spin texture in an analytical model that is
linked with the microscopic parameters of the bulk. We find that the spin texture
is in the surface plane tangential to the curve of a conic section and determined by
three fundamental parameters: the crystal field, the spin-orbit coupling and the band
bending at the surface. The dependence on the latter can be well seen at the M point
spin texture. At these points the in-plane spin texture can be tuned as a function of the
band bending from elliptic with winding number —1, through linear and hyperbolic
to elliptic with winding number +1. As may be seen in Chapter 7 of the thesis the
fact that the surface states are spin-polarized has interesting consequences for the
RKKY interaction. In a model where the RKKY interaction is solely mediated by the
' point surface states we find an interaction which comprises the XY-type term, the
Ising-type and the Dzyaloshinskii-Moriya-type term. The linear combination of these
qualitatively distinct terms is governed by coefficients that depend on the microscopic
parameters of the bulk and on the termination of the surface. On the Sn-terminated
surface (of SnTe and SnSe) we find at zero doping a ferromagnetic coupling parallel to
the connection vector. At finite doping this behaviour goes over to a canting of both
impurity spins which is driven by the Dzyaloshinskii-Moriya term. This canting takes
place in the xz-plane (where the z-axis is the axis parallel to the connection vector
of both impurities and the z-axis is parallel to the (111) direction), depends on the
Fermi energy and is a function of the impurity separation. Finally we consider the
possibility to tune the parameters of the bulk through alloying the SnTe crystal with
lead. We show that the alloying opens a small window with ferromagnetic coupling
in the direction perpendicular to the xz-plane.
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Zusammenfassung

Diese Arbeit untersucht die magnetische Struktur und magnetische Wechselwirkungen
in zwei Klassen von Materialien, die beide iiber niederenergetische chirale Zustédnde
verfiigen. Der erste Teil befasst sich mit ein- bzw. zweilagigen graphenartigen Syste-
men, deren Anregungen sich bei tiefen Energien durch masselose bzw. massive chirale
Quasiteilchen beschreiben lassen. Fiir diese Systeme kann in guter Ndherung ange-
nommen werden, dass die Spin- und die Ortswellenfunktion entkoppelt sind. Wir
untersuchen in Kapitel 3 und 4 die RKKY-Wechselwirkung und diskutieren die Aus-
wirkungen eines elektrischen Feldes, welches zwischen zwei in AB-Folge gestapelten
Graphenlagen angelegt wird. Das elektrische Feld 6ffnet eine Bandliicke und diese
Verédnderung hat, wie in Kapitel 4 dieser Arbeit gezeigt, qualitative Auswirkungen auf
die RKKY-Wechselwirkung. Der zweite Teil dieser Arbeit befasst sich mit der Spin-
physik auf der Oberflache eines topologischen Isolators, der ebenso wie Graphen Dirac-
Weyl-Oberflichenzustéinde aufweist. Im Gegensatz zu Graphen sind die Spin- und die
Ortswellenfunktion allerdings miteinander verschriankt. In vorherigen analytischen Ar-
beiten wurde die Spinphysik in einem phédnomenologischen Dirac-Weyl-Modell behan-
delt, welches einzig und allein auf Symmetrieiiberlegungen basiert und keine Verbin-
dung zu der Bandstruktur des Volumenkristalls aufweist. Wir hingegen beschreiben
in Kapitel 5-7 dieser Arbeit den topologischen Isolator der Zinntellurid-Klasse und
die Eigenschaften des Oberflachenzustandes (wie die RKKY-Wechselwirkung und die
Spinstruktur) in einem mikroskopischen Modell, welches auf grundlegende Art und
Weise mit den Parametern des Volumenkristalls verkniipft ist.

Das Kohlenstoffallotrop Graphen verfiigt, im Gegensatz zu einem normalen zweidi-
mensionalen Elektronengas, iiber eine lineare Bandstruktur mit zwei unterschiedlichen
Dirac-Punkten und hat eine Zustandsdichte, die am Scheitelpunkt des Dirac-Kegels
verschwindet. Diese ungewo6hnliche Bandstruktur fiihrt, wie in fritheren Arbeiten be-
richtet, zu einer RKKY-Wechselwirkung, die in , Armchair“-Richtung mit dem Ab-
stand als monotone 1/R3-Funktion abklingt. Wenn die Fermi-Energie nicht am Schei-
telpunkt des Dirac-Kegels liegt, was durch Dotieren von Graphen erreicht werden
kann, findet man allerdings eine Wechselwirkung, die zwischen ferromagnetisch und
antiferromagnetisch oszilliert und mit 1/R? fillt. Aufgrund der Besonderheit, dass
das Spektrum zwei Minima an zwei unterschiedlichen K-Punkten aufweist, hingt die
Wechselwirkung auflerordentlich stark von dem Kopplungsschema zwischen dem Elek-
tronengas und dem magnetischen Fremdatom ab. Dies wird vor allem, wie in Kapitel 4
beschrieben, am Beispiel der RKKY-Wechselwirkung in zweilagigem AB-gestapeltem
Graphen deutlich. Wir betrachten in dieser Arbeit den duflert realistischen Fall eines
interkalierten magnetischen Fremdatoms, welches mittig zwischen den beiden Gra-
phenlagen sitzt und untersuchen eine ganze Reihe von unterschiedlichen Elektron-
Fremdatom-Kopplungsschemen. Einige Kopplungsschemen zeigen einen komplett un-
auffilligen Verlauf. Bei anderen finden wir hingegen eine Wechselwirkung, die dra-
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matisch an Stirke zunimmt und ihre Wellenléinge unstetig am Rande der virtuellen
Bandliicke (d.h. an der Grenze zwischen den beiden unterschiedlichen Bandstruk-
turbereichen) als Funktion der Fermi-Energie veréndert: innerhalb dieser virtuellen
Bandliicke oszilliert die Wechselwirkung mit dem Wellenzahlvektor, der zu den nie-
derenergetischen Bandern gehort. Am Rand der Bandliicke verindert die Wechsel-
wirkung schlagartig ihre Periode und oszilliert, fiir hohere Fermi-Energie, mit dem
Wellenzahlvektor der &ufleren, hochenergetischen Biander. Zusétzlich nimmt die Wech-
selwirkung in diesem Bandstrukturbereich auflerordentlich an Stérke zu und ist fiir
kurze Absténde zwischen den beiden Fremdatomen antiferromagnetisch. Ein dhnlicher
Ubergang kann auch erreicht werden, wenn die Temperatur des Systems erhéht wird:
bei endlicher Temperatur tragen alle Zustédnde in einem Bereich von kg7 um das
chemische Potential bei und wenn das chemische Potential ausreichend nahe an dem
Rande der virtuellen Bandliicke liegt, bestimmt das Verhalten der Zusténde ober-
halb der Bandliicke die RKKY-Wechselwirkung. Eine der effektivsten Methoden um
die RKKY-Wechselwirkung zu beeinflussen ist allerdings das Anlegen eines elektri-
schen Feldes zwischen den beiden Graphenlagen. Das elektrischen Feldes verédndert
die Bandstruktur und die RKKY-Wechselwirkung héngt unter diesen Umsténden
mafigeblich davon ab, ob die Fermi-Energie in der Bandliicke um den K-Punkt, in
dem Bandstrukturbereich der einem , mexikanischen Hut“ &hnelt oder oberhalb die-
ses Bandstrukturbereichs liegt.

Die Oberflache eines topologischen Isolators bietet die besondere Moglichkeit die
RKKY-Wechselwirkung in einem (Gas von spinpolarisierten Leitungselektronen zu
untersuchen. Es ist aus vorherigen Arbeiten bekannt, dass einige IV-VI Halbleiter
wie beispielsweise Zinntellurid (SnTe) auf der (111)-Oberfléche lineare, spinpolari-
sierte Zustédnde aufweisen die durch die Inversionssymmetrie des Kristalls geschiitzt
sind. Diese Zustidnde existieren nicht nur am I'-Punkt sondern auch an den drei M-
Punkten der hexagonalen Oberflachen-Brillouin-Zone. In Kapitel 6 leiten wir diese
Oberflichenzustinde und die dazugehorige Spintextur in einem analytischen Modell
her. Das Modell ist auf fundamentale Art und Weise mit den mikroskopischen Para-
metern des Volumenkristalls, wie dem Kristallfeld, der Spin-Bahn-Kopplung und der
Bandverbiegung an der Oberfliche, verkniipft. Wir finden eine Spintextur, die in der
Oberflachenebene durch ein Vektorfeld gegeben ist, das immer tangential zu der Kur-
ve eines Kegelschnitts verlduft. An den M-Punkten ist es moglich dieses Vektorfeld in
Abhéngigkeit von der Bandverbiegung von elliptisch mit Windungszahl —1, iber line-
ar und hyperbolisch nach elliptische mit Windungszahl 41 zu verformen. Wie in Kapi-
tel 7 dieser Arbeit zu sehen ist, hat die Tatsache, dass die Oberflichenzustdnde spinpo-
larisiert sind interessante Auswirkungen auf die RKKY-Wechselwirkung. In einem Mo-
dell, indem die RKKY-Wechselwirkung lediglich {iber die Oberflichenzustédnde in der
Néhe des I'-Punktes vermittelt wird, finden wir eine Wechselwirkungsenergie, die aus
einem XY-Term, einem Ising-Term und einem Dzyaloshinskii-Moriya-Term besteht.
Die Linearkombination der unterschiedlichen Beitrdge wird durch die mikroskopischen
Parameter des Volumenkristalls und die Wahl der Oberfliche bestimmt. Auf der Sn-
terminierten Oberfliche von SnTe und SnSe finden wir eine ferromagnetische Kopp-
lung, parallel zu dem Verbindungsvektor von beiden Fremdatomen. Dies gilt allerdings
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nur solange die Fermi-Energie am Scheitelpunkt des Dirac-Kegels liegt. Auf der dotier-
ten, Sn-terminierten Oberfliche finden wir eine Verkantung von den Spins der beiden
Fremdatome in Bezug auf den ferromagnetischen oder antiferromagnetischen Refe-
renzzustand parallel zu dem Verbindungsvektor. Diese Verkantung wird durch den
Dzyaloshinskii-Moriya-Term hervorgerufen und findet in der zz-Ebene statt (wobei
die xz-Achse die Verbindungsachse zwischen den beiden magnetischen Fremdatomen
ist und die z-Achse parallel zu der (111)-Richtung liegt). Das Ausmaf} der Verkantung
héngt von der Position der Fermi-Energie und dem Abstand der beiden Fremdatome
ab. Schliellich betrachten wir eine weitere Moglichkeit um die RKKY-Wechselwirkung
auf der Oberfliche eines topologischen Isolators der Zinntellurid-Klasse zu beeinflus-
sen, ndmlich das Legieren des SnTe-Kristalls mit Blei. Es stellt sich in dieser Arbeit
heraus, dass man auf diese Weise eine Situation erreichen kann, in der die Spins von
beiden Fremdatomen, in einem kleinen Bereich, zu einer ferromagnetischen Ausrich-
tung senkrecht zu der zz-Ebene neigen.
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APPENDIX A.

The Indirect Exchange Interaction

The Spin Product (S;.0) (S;;.0)---(S;,,.0)

Lemma:

Let m be a positive integer, let S;, S;,, ..., S;,, be a vector in R® and let o be

the vector of Pauli matrices.

Then, for odd m, the product (S;.0) (S;,.0) - (S;,,.0) takes the form

(SZU) (Sh-o') e (Sim.O')

=Y _sgn(y) (Siworsiw(l)) (Siwm—l)'siw(m))

Y

+ingn(7) (Siw(o)'siw(n) (Si'y('mfs).siﬁﬁﬂ*?)) [(Si'y('rnfl) X Si'y('m)) .a'] (A.1.1)
¥

with ¢ = 79 and the trace given by

Tr [(SIO') (Sil.O'> tee (Ssz')]
=23 sen(1) (St Siv )+ (St S (A1.2)
Y

For even m the spin product takes the form

(SZ‘.O') (Sil.O') ce (Sim.d)

= _sgn(y) <Siw<o>'siw<1>> (Siw(m—awsiw(m—l)) (Si,.-o)

v
— 2 _sen(y) (Siwmwsiw(l)) (Siv<m—4>'siw<m—3>) ([(Siwn—z) x Siv(m—l)) x Sim] '0>
ol
—i—ingn('y) (Siw(o)'siwu)) (Siw(m—3)'si"r(m—2)) [(Siw(m—l) X Swm)) .Sim} (A.1.3)
v

with the trace given by

Tr[(S;.0) (Si,.0) - (S;,,.0)]
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A.1. THE SPIN PRODUCT (S;.0)(S;,.0) - (Sy,,.0)

=203 58n(7) (St Siny )+ (St Sty ) | (Sivimsy X Sty ) Sims|  (A:14)
v

In these expressions the sum Zﬁ/ is taken over all possibilities to make inequivalent
pairs from the set of vectors {S;,S;,,---,S;,}. Provided that each pair is sorted by
its indices in ascending order, the sign of each sequence is determined from the total
number of interchanges.

Proof:

e The Base Case

e m=1

(SiO'U) (Sil'a-) = (SiO'Sil) +1 [(Sio X Sll) 'U]

Tr [(Sio.d) (S“O’)] =2 (Sio-Sil)

(SiO.O') (Sil.cr) (SZ‘Q.O')
= (SiO'Si1) (Siz'a) + (Sllsw) (SiO'U)
= (Sip-8i,) (Siy.0) + 1 [(Sig X Siy) -Si

Tr [(SZ’O.O') (Sil.O') (Si2.0'>] =21 [(Sio X Si1) .Si2]
e The Inductive Step

e m+ 1, even

(SZ‘O.O') (Si1~0') e (Sim-0'> (Sim+1~‘7)

= _san(y) (Siv<o>'siw<1)> o (Si«m-n-swm)) (Sis1-0)
.

— D _sen(y) (Siworsiw(l)) o <Siw<m—s)'siw<m—2>) (szm—l) X Siw(m)) X Simﬂ} "7)
>

+i)_sen(7) (Siw(m'siv(l)) (Siv<m—3>'siv<m—2>> [(Siwm—w % Swm)) 'Simﬂ}
S

Tr [(Sio-0) (Siy.0) -+ (Sip-0) (Sipis-0)]

=2i) sgn(7) (SWO)'SWU) (Siwm—srsiv(m—z)) [(Siv(m—l) x Siv(m)) 'Sim+1]
Y
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e m+1,o0dd
(Siy.0) (Siy.0) -+ (Si,,.0) (S L

it
_ngn (S +(0)" (1>) "(S m—2>'Siv<mfl>) (Sin i)

UJ

=

o
N2
=

=
=
\—/

) (St Si) - (S5,
_ngn (S 1S ) (S <m—4>'Siv<m—3>) (Siwm—m'sim) (Siw<m—1>'sim+1)

H;Sgnw) (S N Sw) (s o Si )) ((Si,, x Si,.1) .0)

+¢§:sgn(y) (SWO).S W) (siv(m_@.s (m_g)) (s o ).sim) ((sw_ xS mﬂ) a)
) (S5 ) (S S (S ) (S <) )
e (S ) (S S (S S0} 51) (S

— (Si,.0) (Siy.0) -+ (Si,,.0) (Sim+1-0') =

=D _sen(y ( i) ‘v(l)) (Siv(m—m‘siv(m—l)) (Siw<m)'siw<m+1>>
>

+i ZSgn(V) (Siw<o>'siw<1>> (Siwm—z)'siw(m—l)) [(Sivm) X Siw(m+1)> “7}
Y

Tr [(Sio-0) (Si;.0) -+ (Si-0) (Sipis-0)]

111



APPENDIX B

Bessel Functions

In the following we present some standard identities involving Bessel functions that
are used throughout the thesis and can be for example found in Ref. [101].

Bessel Functions of the First Kind J,(z)

Integral Representations

1 27 ) )
J(2) =— / dp e*°*%e? VvelZ (B.1.1)
21 0
1 [" )
Ju(2) :—/ dp cos(zsinyp — vp)
T Jo
: . ' 1
_ T / dt e=sinht-vt V|ph(z)| < =7 (B.1.2)
us 0 2
2 [ ) 1
Ju(2) :—/ dt sin (z cosht — —mr) cosh(vt)
T Jo 2
VIR <1Az>0 (B.1.3)
Derivatives
" () = —(2) (B.1.4)
dz o\%) = 12 1.
1d : —v k_—v—k
gl J(z) = (—1)"z Jyik(2) vV keNy (B.1.5)
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Negative Order

J_(2) = (-1)"J,(2) Vvel (B.1.6)
Analytic Continuation
J (€M7 z) = ™7™ J,(z) VmeZ (B.1.7)
Asymtptotics
Small Argument
7 = o (2) (B.1.8)
T T) \2 -
Large Argument
2 1\«
J(z) = — {cos {z — (V + 5) 5]
4?2 -1 . 1\ 7
——g, Sin {z — (V + 5) 5} } (B.1.9)
Bessel Functions of the Second Kind Y, (z2)
Integral Representations
1 [7 . .
Y, (2) ——/ dy sin (zsing — vp)
T Jo
1 OO vt —vt —zsinht 1
— ;/ dt (e 4 e cos(vm)) e V|ph(z)| < 37 (B.2.1)
0
2 [ 1
Y, (2) =— ;/ dt cos <z cosht — §V7T> cosh(vt) VIR <1Az>0 (B.22)
0
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B.3. HANKEL FUNCTIONS

Derivatives

d
E%('Z) = —Yi(2)

1d\"
(_E) 27Y,(2) = (=) 27 FY, 1 (2) VkeN,
z

Negative Order
Yo, (2) = (—1)"Y,(2) Vvez
Analytic Continuation
Y, (™7 2) = e T Y, (2) + 2i sin(myr) cot(v)J,(2) VmeZ

Asymtptotics

Samll Argument

Large Argument

Hankel Functions

Definition

(B.2.3)

(B.2.4)

(B.2.5)

(B.2.6)

(B.2.7)

(B.2.8)

(B.3.1)



APPENDIX B. BESSEL FUNCTIONS

Hy(z) = Jy(2) — Y, ()

Recurrence Relation

d
S Hi(z) = —H}(2)
1d : —vrrl k_—v—krrl
o) AHNE) = (DR, G) VEEN,

Analytic Continuation

sin(vm) H(ze"™™) = —sin([m — 1vr) H:(2) — sin(myr) ™™ H?(z)

sin(vr) H2(ze"™™) = sin(muvr) ™ H(2) +sin([m + 1vr) H(2)

Asymptotics

Small Argument

Large Argument

2 4% —1 1
Hl — (1 z(z—fmr—z )
L(2) 7rz< +1 % ) e
2 4?2 —1 o1
H%(z) =/ — (1 B ) ei(=—3vm—1m)
Tz 8z

(B.3.2)

(B.3.5)

(B.3.6)

(B.3.7)

(B.3.8)

(B.3.9)

(B.3.10)



B.4. MODIFIED BESSEL FUNCTION OF THE SECOND KIND

R — 0 Limit
S (h(alR) - Yo(lelR) >0
iy (1o (vF)) = g {% (1o~ |2 R) — Yo(—lalR)) = <0

. {%(uou:sm) ~Yo(lg[R))  =>0
i=0 | =S (ido(|2|R) + Yo(|z|R)) 2« <0

= sign(F) Vee R (B.3.11)

lim S (Hi(zR)) = lim {%<JO(|:E|R> + 1Yy (|z|R)) x>0

o 120\ S (o(—e|R) + iYo(—Ja|R)) <0
o {3 CollalR) + Ya(lal B) >0
R=0 | S (=Jo(|z|R) + iYo(|z|R)) x <0
:}{ig})Yg(MR) Ve e R
(B.3.12)
Sum of Hankel Functions
Hy(2) + Hy(—2") = Hy(2) — H(2")
— Hi(z) — HY(=)'
— 2iY,(2) (B.3.13)
Hy(2) — Hy(—2") = Hy(2) + Hy(2)
= Hy(2) + Hy (2)"
= 2Jo(2) (B.3.14)
Modified Bessel Function of the Second Kind
Integral Representation
*  kJo(kR)
Ko (2R) :/O dk h vV R(z) >0 (B.4.1)
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Connection to Hankel Functions
1 v+1 gyl
K,(z) = Em H(iz)

Asymptotics

Small Argument

Large Argument

2 4% —1
K, (z)=1/—e "1
(2) T2 ( * 8z )

Integrals of Bessel functions

Laplace Transform

[e'¢) WarT 1
/ dx x"J,(ax)e ™" = v + 2)1 Y > ——
0 VT(s? 4+ a?)'tz
) 21/—}-1 vsD 3
/ dr " J,(azx)e " = a’sllv + 23) Vv > —1
0 VT(s? +a?)"t:
/ dr 2 J,(2v/ax)e s = aile’% Vv > —1
0 ¥
Various Integrals
¥ 1
/ dr’ ' Jo(2")Yy(a') = §m2 [Jo(x)Yo(x) + Ji(2)Y1(2)] Vo >0
0
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(B.4.3)

(B.4.4)

(B.5.1)

(B.5.2)

(B.5.3)

(B.5.4)



B.5. INTEGRALS OF BESSEL FUNCTIONS

2T'(v)

/ dl’/ .T,“KV(.T/):QH_IF (“—i_g_‘_l)F(M—;_"l)
0

VR(pu+v) > —1 (B.5.6)

/ de’ VY, 1(2") = 2"Y,(x) + Vo >0 (B.5.5)
0

118



APPENDIX C

The RKKY Interaction in Bilayer
Graphene

The Green’s Function of A A-stacked Bilayer Graphene

Zero Temperature

Finite Temperature

Gorasary (R E) = =525 Moyary (R E) || G5, o, (Riwon) = =52 Mayar, (R, icon)
2t =g (BE4in+ty) 2t = g (hw, —ip — it )
27 = (E4in—ty) 27 = g (hwy, — i+ it )
gy Mo, Mayar,,
A1 Ay 2YH}(2TR) + 2~ Hi (2~ R) sign (wy,) [zTKo(2TR) + 2~ Ko(2~ R))
A1By| i®,(R) [T H{ (2" R) + 2~ H{ (" R)] ®,,(R) [2TK1(2TR) + 2~ K1 (2~ R)]
A1 A,y 2YHY(2TR) — 2~ H} (2™ R) sign (wy,) [zTKo(2TR) — 27 Ko(2~ R)]
A1By| i®,(R) [T H{ (2T R) — 2~ H{ (™ R)] ®,,(R)[2"K1(2tR) — 2~ K1(2~ R)]

Table C.1: The Green’s function of AA-stacked bilayer graphene at zero and at
finite temperature. Shown are only the four fundamentally different matrix elements
which are at zero temperature represented by a linear combination of two Hankel

functions H}(x) and at finite temperature represented by a linear combination of two
modified Bessel function K,(x).



C.2. THE GREEN’S FUNCTION OF AB-STACKED BILAYER GRAPHENE

The Green’s Function of AB-stacked Bilayer Graphene

Zero Temperature Finite Temperature
GO o, (R, B) = =g — Mayar, (R, E) Grnarary (Ryiwon) = = s Mayar,, (R iwn)
=g V(E+ i) (E+in+ty) 2t = =/ (hwn — ip) (hwn —ip — it 1)
27 = peV(E+in)(E+in—t1) 27 = e/ (hwn — ip) (hwn — ip + it 1)
oy Ma,ar, Ma,ar,,
A1 Ay E[Hy(2*R) + Hj (2™ R)] (hwn — ip) [Ko(2TR) + Ko(2~ R)]
A1B1| ihwp®m(R) [T Hi(2TR) + 2~ Hi (2™ R)| wp®m(R) [z K1(2"R) + 2~ Ki1(2” R)]
A Ay E[Hy(2*R) — Hi (2™ R)] (hwn — ip) [Ko(2TR) — Ko(2~ R)]
A1By| ihwp®;,(R) [T Hi(2TR) — 2~ H{ (2™ R)| hwp®;, (R) [z Ki1(2TR) — 2~ Ki1(2™ R)]
(hwn — ip — ity ) Ko(2zTR)
BiBi| (E+7.)Hi(2TR)+ (E —7.)H} (2~ R)
+(iwn —ip+it, )Ko(2™ R)
BBy~ "Rr®2(R) V2 HY (=T R) — 2 2HY (2" R)] || i @32(R) [*2K2(z* R) — 2 2Ka (= R))]

Table C.2: The Green’s function of AB-stacked bilayer graphene at zero [54, 91]
and at finite temperature. Shown are only the six fundamentally different matrix
elements. K,(z) stands for the modified Bessel function and H!(z) for the Hankel
function of the first kind and vth order. The square roots are taken so that the real
part is positive valued.
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APPENDIX C. THE RKKY INTERACTION IN BILAYER GRAPHENE

The Green’s Function of Biased AB-stacked Bilayer

Graphene
Zero Temperature
G (R, E) = — 5o M(R, E)

o= g B+ + Y 4w A(V) = u+ (E+in)V

=\ J(E+in)?+ 5 —u B(V)=2(E +in)+V
w= B+ (2 - Y0 Fi(V) = u— s(E + i)V + s 25+ 12
'y Mea,ar,
AL Ay 2B(-V) [A(=V)H} (2TR) + A(V)H} (=~ R)|
A B 4ihvp®,, (R) [A(=V)2TH{ (2TR) + A(V)z~ H{ (2™ R)]
Ay Ay t . B(V)B(~V) [H} (z*R) — H} (2~ R)]
A1 By 2ihvp®t, (R)t1 B(~V) [2TH} (7 R) — 2~ H} (z” R)]
BB 2B(—V) [F4+(V)H} (27 R) + F_(V)H} (:”R)]
B A, 2ilvp®’, (R)t1 B(V) [z H} (:*R) — 2~ H} (7 R)]
B1B, —4h2v% @2 (R) ¢, [¢72H} (2T R) — 27 2H} (2~ R)]
A Ay 2B(V) [A(V)H{ (*R) + A(=V)H{ (2~ R)]
Ay By 4ihvp®;, (R) [A(V)2TH{ (:TR) + A(=V)z"H{ (" R)]
ByBs 2B(V) [Fr(=V)H} (2"R) + F_(-V)Hj (2~ R)]

Table C.3: The Green’s function of biased AB-stacked bilayer graphene at zero
temperature. FEach matrix element is a linear combination of two Hankel functions
H](z) of the first kind and vth order. By convention, all square roots are taken so
that the real part is positive valued.
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C.3. THE GREEN’S FUNCTION OF BIASED AB-STACKED BILAYER
GRAPHENE

Finite Temperature

G5 (R iwn) = — gy M(R, i)
ot =i [(ihw, + p)® + 5 A(V) = u+ [ihw, + p] V
zT = h’Ll)F \/(ihwn+u)2+vj2 —u B(V) = 2ihw, +2u+V

: |
w= (it + 10> (V2 +2) = S F(V) = w— sfiwn + ] V 4 s Jiment 22

gy Maar,,

ALA 2B(-V) [A(-V)Hj (zTR) + A(V)Hj (=~ R)]
AB; 4ihvp®,, (R) [A(=V)zTH{ (7 R) + A(V)2"H{ (™ R)]
A1 Ay t.B(V)B(—V) [Hg (7 R) — H} (=~ R)]

A By 2ihvp®%, (R)t B(~V) [zt H} (:7R) — 2~ H{ (: R)]
B1B; 2B(—V) [Fy(V)H (27 R) + F_(V)H} (2~ R)]

B1 A, 2ihvp®;, (R)t B(V) [T H] (:7R) — 2~ H{ (™ R)]
B1Bs —4h*0%.®0r2 (R)ty [272H3 (2T R) — 27 2Hj (2" R)]
As Ay 2B(V) [A(V)H} (T R) + A(-V)H} (2~ R)]

Ay By 4ihvp®;, (R) [A(V)2TH] (27 R) + A(=V)z"H{ (" R)]
ByBs 2B(V) [Fr(=V)Hg (7 R) + F_(~V)Hj (~R)]

Table C.4: The Green’s function of biased AB-stacked bilayer graphene at finite
temperature. K,(x) stands for the modified Bessel function of the vth order. By
convention, all square roots are taken so that the real part is positive valued.
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APPENDIX C. THE RKKY INTERACTION IN BILAYER GRAPHENE

The DOS of Biased AB-stacked
Bilayer Graphene

In this Appendix, we present an analytical derivation of the DOS of biased AB-stacked
bilayer graphene. For the derivation we use the zero temperature Green’s function
which is given in Table (C.3). Exemplarily we focus on site A; where the DOS can
be obtained from the following ansatz

1
T 13 Cx [QOR
Dy, (E) = - }?ILI}) R |:GA1A1 (R, E)] (C.4.1)
Substituting the appropriate matrix element of the Green’s function into Eq. (C.4.1)
leads to the expression

Da(E) = m }%ifﬂm% [A(—V)UB(—V) HY(z*R)
+ w}f(}(z_fi)} (C.4.2)

with 27, 27 and u defined according to Table (C.3). Here it is worth to mention that
the Green’s function, that we have substituted into Eq. (C.4.1), consists of two parts
expanded in vicinity of the two inequivalent K points. These two parts contribute
equally to the DOS and this manifests in Eq. (C.4.2) in a factor of two. Apart
from that it is important to note that the energy comes in Eq. (C.4.2) with a small
imaginary part n. When we take the  — 0 limit and proceed with a further analytical
evaluation we have to distinguish between the four distinct band structure regions:
the gap around the K point, the Mexican hat region, the gap between the low and
the high energy band and the two band region.

In the gap around the K point the variable u is purely imaginary which implies that
2T and 2z~ are complex valued and connected by the identity 2™ = —z7*. Under these
circumstances Eq. (C.4.2) can be brought to the form

D (E) = ;hm?R[B(;V)(|u|Y0(z+R)+EVJ0(z+R)>} (C.43)

FL21)12;~QBZ R—0

with |ul? = (Ru)? + (Su)?. Tt can be seen that the special connection between 2 and
2z~ together with the structure of the coefficients ensure that the linear combination
inside the real part is, in the n — 0 limit, purely real. As a consequence the DOS is
Zero.

In the Mexican hat and in the two band region the 7 — 0 limit of the small imaginary
part in the denominator of Eq. (C.4.2) must be taken with help of the Sokhotsky-
Plemelj theorem

"BV i R [A(<V)HD (4 R) + A(V)H (=~ R)]

2h20EQ) g7 u R—0

D (FE)
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C.4. THE DOS OF BIASED AB-STACKED BILAYER GRAPHENE

71'2B(—V) _ o _ L
e, W B S AV H ("R + AV)Hs (" R)] (CA4d)

where the variables u, z* and 2~ are now taken as purely real. The term in the second
line does not contribute to the DOS since the function inside the imaginary part is
zero when u = (. For this reason there remains only the term in the first line which
can be rewritten with help of Eq. (B.3.11) as follows

7B(=V)

Pl = Spe

[A(=V)sgn(z%) + A(V)sgn(z7)] (C.4.5)
After that step we have to distinguish between the Mexican hat region and the two
band region since the sign of the two variables 2™ and 2~ is a function of the energy:
in the Mexican hat region z* is positive while 2~ is negative and, hence, the DOS can
be brought to the form

TEV (2E — V)
Dy (F) = — E C.4.6
A1(E) sgn(E) RQU%QBZU ( )
In the two band region the signs are connected by the identity sign(z*) = —sign(z~) =
sgn(FE) which yields, substituted into Eq. (C.4.5), the following result
T(2E-V)
Dy(B)= ———7F-—7-—= c4.7
n(B) =T (€47

In the gap between the low and the high energy band we have an entirely new situation:
either 2™ or 2z~ is now purely imaginary which implies that the respective Hankel
function is purely imaginary and gives no contribution to the real part of Eq. (C.4.2).
The contribution from the remaining Hankel function can be simplified, in the R — 0
limit, with help of Eq. (B.3.11):

T(2E - V)(u— |E|V)
2h2U%QBzu

Du (E) = sgn(E) (C.4.8)

All in all we find the DOS of biased AB-stacked bilayer graphene on site A; given by

™

DAl(E) = Slgn(E) m
F

pa(E) (C.4.9)

with pa1(F) defined as follows:

(2u(2E - V) B> /% 42

QE-V)(u—|ElV) Y+ >|E>Y C.010)

—2ElVRE-V) Y >I|E|> WVV%T%

Vit
El <5

pal(E) =

0
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APPENDIX C. THE RKKY INTERACTION IN BILAYER GRAPHENE

The RKKY Interaction in Biased AB-stacked Bi-
layer Graphene at Zero Temperature

(R)

/
OélCYl/ Ialal,

AAr| gk j}; dE S (25 [AG-V)HY (= R) + AV)H (=~ R)])
F F

Aods| gtz | dE S (BEE [AV)HYHR) + A(-V)H) (- R)))

BB | iy | dES (B<;2V>2 [F, (V)HL 2+ R) + F_(V)H(}(z*R)f)
F F

BBy | gty ) dE S (BSE [FL(-V)HY (4 R) + F_(-V)H} (= R)]*)
B1A, f B ( L [A(-V)z*HI(z"R) + A(V)z*Hf(z*R)]2>

AsBs f dE (\ uQ [A(V)2*H{(2TR) —|—A(—V)Z_H11(Z_R)]2)

B2 Ay > f; dE S (2528 [} R) - 2 Hi (= R)])
A=t f aB S (P55 [ HiHR) - = Hi e R)))
BB, h2optd Lj dE (# [2T2H}(=*R) — Z—QH%(Z_R)]2>

Table C.5: The RKKY interaction in biased bilayer graphene. The ten distinct ex-
change integrals can be brought to the separable form Jo,or, (R) = Clo,ar, (R) fayor, (R)
with C = —X\?h?a?/(64xt?). This table defines the intravalley scattering function
oo, (R) with A(V'), B(V), FL(V), u, 2 and z~ taken from Appendix C.3. The fast
oscillation function f,,.,(R) may be read of from Table (4.3).
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APPENDIX D

The Topological Surface States of a
Topological Insulator of the SnTe
Class

The Spin Operator in the Basis of the Bulk Band
Edge States

In Chapter 6, we have presented a derivation of the topological surface states of a topological
insulator of the SnTe class in vicinity of the I' point and in vicinity of the three inequivalent
M points of the surface Brillouin zone. The topological surface states at the three M points
are treated each in an own coordinate system. These coordinate systems are chosen so that
the k, and k, axis are aligned with the semi-axes of the elliptic cone that is obtained as a
spectrum. In these local coordinate systems the bulk band edge states take the form

O _.a _ B
| <I>5> = — sin 76_25 (sin’g | cI)+TM> + Cosg | (I>+¢M>>

O o _ _
+ cos 76’5 <COS§ | (IJOTM> - sing | @, ‘LM>> (D.1.1)

07 ,a _ B
K |®,)=—sin 7615 (cos§ ] q)_TM> _ Sing | (I)_iM>>

S} o _ _
+ cos 76_25 (sing | @, Tary 4 cosg | @, “f>) (D.1.2)

Ot ..
| &) =cos 76725 <sin§ | @iTM> + cosg | @i“”))

OF o
+sin ——e' (cos§ | Ty — sing | cng>> (D.1.3)

-
K | ®f) =cos G—e’5 Cosé | Ty siné | @iy
2 2 2
+

+ sin %e*i% <sin§ | @g“”) + cosg \ QB%M)) (D.1.4)

with ©F and ©~ defined in Table (5.1) and where [t)/) and |]/) stand for the spin up or
spin down wave function represented in the coordinate system of each M point. The two
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APPENDIX D. THE TOPOLOGICAL SURFACE STATES OF A
TOPOLOGICAL INSULATOR OF THE SnTe CLASS

parameters a and 3 are given by
a; = (=1)"*'7/6 B = arccos(1/3) (D.1.5)

where ¢ € {1,2,3} labels according to Fig. (6.2a) the position of the M point in the surface
Brillouin zone. A representation of the spin operator o in this basis yields the following
matrix elements

(P53 |0y | D5 ) = —sinfcos O~ (D.1.6)

(@ | 0z | ®F) = sin BcosOF (D.1.7)

(@ | 0p | K®y) = e cos 3 cos? % (D.1.8)
, +

(@] | 0p | K®) = e cos Bsin? @7 (D.1.9)

(5 | oy | P5) =0 (D.1.10)

(@ |oy | ®7) =0 (D.1.11)

(@5 | oy | KBy ) = —ie ™ cos? % (D.1.12)

, +

(@F | 0y | KOF) = —ie~ sin® % (D.1.13)

(P |0, | ®;) =cosfcos©O (D.1.14)

(@ | o, | @) = —cos BecosOF (D.1.15)

(®; | o, | K&, ) = e "“sin B cos? % (D.1.16)
. +

(@ | o, | K®T) = e "sin Bsin? % (D.1.17)

It should be noted that these formulas can be also used to describe the spin polarization at
the I' point. In this case we have to set a = 5 = 0.

The Absolute Value of the Spin

In this Appendix, we prove that the absolute value of the expectation value of the spin
operator |[(U | o | ¥)|| in the topological surface state | U) [Eq. (6.1.18)] is always less than
or equal to one. To this end we take the topological surface state | ¥), in which spin and
position space are entangled, and rewrite the wave function as follows

| W) = x1) M+ | x2) 1) (D.2.1)

where |1) (|]4)) is the spin up (spin down) wave function and where the position space
dependence is hidden in | x1) and | x2). Using this expansion we find the spin polarization
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D.2. THE ABSOLUTE VALUE OF THE SPIN

given by
2 R{x1 | x2)
(U|o|V)= 2 3(x1 | x2) (D.2.2)

(x1x1) — el x2)

where o stands for the spin operator. Hence, the absolute value takes the form

2
1w Lo DI =400 | )2+ [0 | xa) = G | xa)] (D.2.3)

According to the Cauchy-Schwarz inequality the first term on the right hand side of Eq. (D.2.3)
can be approximated as [(x1 | x2)[* < (x1 | x1){(x2 | x2). Finally, we make use of this in-

equality and conclude:
Jw | o | w2 <1 (D.2.4)
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